首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过气雾化方法制备Al86Ni7Y4.5Co1La1.5(摩尔分数,%)合金粉末。首先,将粉末进行不同时间的球磨,然后在不同的烧结温度及保压时间等条件下对粉末分别进行热压烧结和放电等离子烧结。通过X射线衍射仪(XRD),扫描电镜(sEM)以及透射电镜(TEM)对粉末和块体材料的显微组织和形貌进行表征。结果表明:在特定球磨参数下球磨100h以上可以产生非晶,而且通过放电等离子烧结可以得到非晶/纳米晶块体材料,然而这种材料的相对密度较低。通过热压烧结可制备抗压强度为650MPa的Al86Ni7Y4.5Co1La1.5纳米块体材料。  相似文献   

2.
采用扫描电镜、X射线衍射仪、透射电镜对用机械合金化法制备的Ti60A140纳米级粉末及其SPS烧结块体的形貌、组织及微观结构进行了研究。结果表明,Ti和Al的粉末随着球磨时间的延长有明显地细化趋势,球磨5h后产生非晶,20h后完全接近非晶相。采用脉冲放电等离子烧结(SPS)技术,在1200℃温度下能够制备出较高硬度的Ti-Al金属间化合物块体材料。  相似文献   

3.
采用扫描电镜、X射线衍射仪、透射电镜对用机械合金化法制备的Ti60A l40纳米级粉末及其SPS烧结块体的形貌、组织及微观结构进行了研究。结果表明,Ti和A l的粉末随着球磨时间的延长有明显地细化趋势,球磨5h后产生非晶,20 h后完全接近非晶相。采用脉冲放电等离子烧结(SPS)技术,在1200℃温度下能够制备出较高硬度的Ti-A l金属间化合物块体材料。  相似文献   

4.
本文研究了原位烧结法制备TiAl基超细晶/纳米晶合金。首先,通过球磨方式细化TiH2, Al, Si 和 Nb 粉,然后将球磨后粉末进行放电等离子烧结。利用X-射线衍射仪、扫描电镜和透射电镜分析球磨粉末及其烧结块体的特性,利用差热分析仪测试高温抗氧化性。试验结果显示,球磨过程中产生了非晶、Ti3Al纳米晶和TiH2的分解产物,球磨后粉末经高温烧结时,这些细小粉末迅速地转变成TiAl和Ti3Al相,TiAl相的晶粒尺寸为500nm~1μm,Ti3Al相为几个纳米,这种超细烧结组织在1000℃下非常稳定,而且具有良好的抗氧化性。  相似文献   

5.
研究了原位烧结法制备TiAl基超细晶/纳米晶合金。首先,通过球磨方式细化TiH2,Al,Si和Nb粉,然后将球磨后粉末进行放电等离子烧结。利用X射线衍射仪、扫描电镜和透射电镜分析球磨粉末及其烧结块体的特性,利用差热分析仪测试高温抗氧化性。试验结果显示,球磨过程中产生了非晶、Ti3Al纳米晶和TiH2的分解产物,球磨后粉末经高温烧结时,这些细小粉末迅速地转变成TiAl和Ti3Al相,TiAl相的晶粒尺寸为500 nm~1μm,Ti3Al相为几个纳米,这种超细烧结组织在1000℃下非常稳定,而且具有良好的抗氧化性。  相似文献   

6.
将0.075mm的Ti,Cu,Ni,Sn4种金属粉按合金成分为Ti50Cu23Ni20Sn7进行配比,并在行星式球磨机中进行机械合金化(MA)球磨。试验中的球磨机转速为300r/m,球料比为10:1。XRD和DSC分析结果表明,经过30h球磨之后,金属粉末已经全部合金化,并且为非晶态结构。继续进行球磨只能减小粉末颗粒尺寸,却会引入更多的杂质,所以30h是制备Ti50Cu23Ni20Sn7非晶合金粉末最为合适的时间。SEM下观察发现,经机械合金化所获得的非晶粉为层状团聚结构。将所制备的非晶合金粉装入碳化钨模具中,并在放电等离子烧结(SPS)设备中进行快速烧结。其烧结的温度分别为480、490、500和510℃,烧结压力为500MPa,保温时间为1min。从XRD和DSC分析结果可以看出,烧结后的合金基体为非晶结构,并伴有少量晶化相。烧结件放在光学显微镜下观察可以看到少许缩孔和疏松等烧结缺陷。将温度为490℃下烧结的试件破碎,并将断口在SEM下观察可以发现,试件断裂方式为层状脆性断裂。试验结果表明采用机械合金化和放电等离子烧结技术可以成功制备出Ti基大块金属玻璃。  相似文献   

7.
以元素粉末为原料,采用机械合金化方法结合放电等离子烧结工艺制备了Ti-8Mo-(0~9)Fe合金材料,并探讨了制备工艺对球磨粉体及烧结态合金性能的影响规律。结果表明,当铁含量为3%~9%(质量分数)时,球磨10 h粉体经900℃烧结可获得高致密度、并具有超细晶结构的钛合金材料,其显微组织主要由β-Ti相基体及fcc-Ti颗粒组成,其晶粒尺寸为130~490 nm,这是在钛合金块体材料中首次制备出fcc结构Ti相。在机械合金化过程中,Fe元素的加入可显著提高合金体系的非晶形成能力,并随Fe含量增加体系非晶形成能力增强,粉末非晶相比例增加,经10 h高能球磨后,即可合成具有良好的热稳定性的非晶/纳米晶Ti-Mo-Fe复合粉末。  相似文献   

8.
采用机械合金化制备不含和含2%(体积分数)B4C的钛基非晶合金粉末,随后采用放电等离子烧结-非晶晶化法合成不含/含(TiB+TiC)的Ti7oNb7.8Cu8.4Ni7.2Al6.6超细晶/细晶钛基复合材料;运用X射线衍射分析(XRD)、差示扫描量热分析(DSC)、扫描电子显微镜(SEM)和万能材料试验机等对制备的钛基非晶粉末和超细晶/细晶钛基复合材料进行表征.结果表明高能球磨80h的钛基粉末中主要为非晶相,B4C颗粒的加入对钛基粉末的玻璃转变温度、晶化温度和晶化焓有显著的影响.另外,不含/含(TiB+TiC)的复合材料的显微硬度分别为5.47和5.33GPa;以50K/min升温到1223K并保温10min获得的Ti70Nb7.8Cu8.4Ni7.2Al6.6块体试样的断裂强度和断裂应变分别为2098MPa和11.5%.  相似文献   

9.
采用高能球磨法制备出La0 6Eu0.4B6纳米粉体,将球磨后的纳米粉进行放电等离子(SPS)烧结,制备出了高致密的La0.6Eu0.4B6多晶块体材料.系统研究了烧结温度、烧结压力对样品致密度和力学性能的影响.结果表明,该方法与传统热压烧结方法相比有效降低了烧结温度,制备出的样品密度、维氏硬度和抗弯强度分别达到4.71 g/cm3、23.37 GPa和295.14MPa,这些值均高于传统热压烧结方法.热电子发射结果表明,当阴极温度为1873 K时,最大发射电流密度为33.74 A/cm2.实验过程中还发现,在相同烧结工艺下,球磨纳米粉与粗粉相比,维氏硬度、抗弯强度和热电子发射电流密度分别提高了28%、58%和32%.因此,在固相烧结过程中,粉末粒度的减小,更有助于烧结性能的提高.  相似文献   

10.
双步球磨与放电等离子烧结制备细晶TiAl合金   总被引:1,自引:0,他引:1  
采用双步球磨法和放电等离子烧结(SPS)技术制备细晶Ti-47Al(at%)合金,利用扫描电子显微镜(SEM)、X射线衍射(XRD)仪以及透射电子显微镜(TEM)等分析测试手段对球磨后的粉末形貌结构、相组成以及烧结块体的显微组织结构进行观察和分析。结果表明:双步球磨粉末的颗粒形状较规则,其颗粒尺寸在20~40μm之间,内部结构均匀,主要由TiAl和Ti3Al相组成。放电等离子烧结后的块体主要由主相TiAl和少量的Ti3Al相及Ti2Al相组成,随着烧结温度的升高,Ti3Al相含量有所增加。当烧结温度为1000℃时,烧结块体获得的主要是等轴晶组织,等轴晶粒尺寸大多数在100~250nm之间。当烧结温度为1100℃时,烧结块体致密、无孔洞,等轴晶粒有明显长大的现象,显微组织主要由等轴状的TiAl相和片层状的Ti3Al相组成。  相似文献   

11.
CoSb3纳米晶块体热电材料的制备研究   总被引:6,自引:0,他引:6  
采用机械合金化.放电等离子烧结工艺(MA-SPS),在200℃~600℃之间制备了纳米晶CoSb3合金块体材料。采用XRD和TEM对材料的相组成和微观组织进行了测试分析。实验结果表明,烧结前粉末为高能球磨得到的平均晶粒尺寸为20nm~35nm的纳米晶CoSb3粉末,SPS烧结后CoSb3合金块体的平均晶粒尺寸小于100nm,其致密度达到了91.3%~99.6%。CoSb3块体的晶粒尺寸随着烧结温度的降低而减小,而密度却随着烧结温度的升高而增加。CoSb3纳米晶块体热电材料的制备机理是MA使粉末晶粒细化到纳米级,放电等离子烧结的快速、短时、低温和特殊烧结机理显著抑制了烧结时的晶粒长大。  相似文献   

12.
利用机械合金化方法制备55Mg35Ni10Si三元非晶合金粉末,以该非晶粉末为基础材料,采用真空热压法制备55Mg35Ni10Si非晶块体,利用显微硬度测试等手段考察其力学性能。DSC和XRD分析表明,粉体和块体材料中均出现一个明显的放热峰,结合高分辨电子显微镜观察证明,真空热压后块体材料总体上仍以非晶相为主并含少量纳米晶,而块体材料的晶化峰温度要略低于非晶粉末。力学性能测试表明,块体材料的显微硬度为7 834-8 048 MPa,且随载荷的增加而下降,与传统晶态材料的硬度-载荷依赖关系相似。块体材料的断口呈山峦状,没有明显塑性形变的特征,断裂裂纹扩展沿压痕对角线呈放射状。  相似文献   

13.
采用机械合金化(MA)和放电等离子烧结(SPS)技术制备了Y2O3弥散强化Co基合金,研究了高能球磨过程中粉末形貌和微观结构的变化规律以及机械合金化粉末的放电等离子烧结行为。结果表明:在球磨的初始阶段(≤8h),粉末粒度和晶粒尺寸显著减小,晶格畸变增大;球磨8h以后,粉末粒度、晶粒尺寸和晶格畸变的变化渐缓;但进一步延长球磨时间,使Y2O3弥散粒子的分布更加均匀。采用放电等离子烧结技术,在1100℃,10min条件下便可制备出相对密度〉99%的合金试样,所得合金平均晶粒小于5μm,经过均匀化热处理后,合金的室温抗压强度和压缩延伸率分别达到1982MPa和27%,优于铸造钻基合金。  相似文献   

14.
采用3TiC/2Si/0.2Al粉体为原料,通过原位反应烧结技术制备致密的纳米SiC增强Ti3SiC2材料,同时研究不同烧结方式(热压烧结和放电等离子烧结)对反应产物的影响.采用XRD、SEM和EDS对试样的物相组成、微观形貌和微区成分进行分析.结果表明,采用两种烧结技术都可制备致密的SiC增强Ti3SiC2细晶材料;采用热压烧结技术可制备纳米SiC-Ti3SiC2复合材料;采用放电等离子烧结技术得到的复合材料中SiC晶粒略粗,为500 nm.  相似文献   

15.
利用真空单辊急冷法和球磨法分别制备出Fe74Al4Sn2(PSiBC)20非晶合金带材和非晶合金粉末。并利用放电等离子烧结法(SPS)制备出14 mm×6 mm×2 mm的Fe74Al4Sn2(PSiBC)20块体非晶合金磁粉芯,测试了Fe74Al4Sn2(PSiBC)20块体非晶合金磁粉芯(40匝绕线)在1 kHz~1 MHz,0~1 A直流偏流下的磁性能。结果表明:Fe74Al4Sn2(PSiBC)20块体非晶合金磁粉芯具有较好的抗直流偏流性能和较高的磁导率。较低的价格、较好的成型性和良好的软磁性能使Fe74Al4Sn2(PSiBC)20块体非晶合金磁粉芯具有良好的应用前景。  相似文献   

16.
采用机械合金化(MA)及热压烧结工艺制备纳米晶Fe3Al块体材料。采用X射线衍射、透射电镜、扫描电镜等对MA粉体及热压块体的相及显微组织进行分析,并对热压块体的力学性能及断口形貌进行了测试分析。结果表明:Fe72Al28混合粉在球磨过程中,Al逐渐溶入Fe中,形成Fe(Al)过饱和固溶体,纳米晶粉体的结构有序度较低。在1200℃,保温1h下真空热压烧结,Fe(Al)转变为有序的DO3-Fe3Al,同时发生晶粒长大。Fe3Al块体晶粒尺寸为40.1nm,相对密度大于96%,维氏硬度626.8 HV,三点弯曲强度985MPa;弯曲断口为脆性断口,但也呈现出一定韧性断裂特征。  相似文献   

17.
采用机械合金化-真空热压烧结(MA-HP)法制备了Al0.4FeCrNi Co1.5Ti0.3高熵合金。利用XRD、SEM和力学压缩试验机分析Al0.4FeCrNiCo1.5Ti0.3合金的微观组织、相转变以及力学性能。结果表明:经高能球磨10 h,合金中形成了简单固溶体fcc和bcc相,而经过热压烧结的Al0.4Fe Cr Ni Co1.5Ti0.3合金以单一fcc相及2种bcc相(bcc1、bcc2)组成。热压烧结Al0.4Fe Cr Ni Co1.5Ti0.3合金致密度达99.48%,其微观硬度(HV),屈服强度、断裂强度、压缩率分别达到725 MPa,2.13 GPa,2.54 GPa,20.1%,合金优异的力学性能主要是因为合金的固溶强化;断裂模式为解理断裂及塑性断裂的混合机制。  相似文献   

18.
采用机械合金化-真空热压烧结(MA-HP)法制备了Al0.4FeCrNi Co1.5Ti0.3高熵合金。利用XRD、SEM和力学压缩试验机分析Al0.4FeCrNiCo1.5Ti0.3合金的微观组织、相转变以及力学性能。结果表明:经高能球磨10 h,合金中形成了简单固溶体fcc和bcc相,而经过热压烧结的Al0.4Fe Cr Ni Co1.5Ti0.3合金以单一fcc相及2种bcc相(bcc1、bcc2)组成。热压烧结Al0.4Fe Cr Ni Co1.5Ti0.3合金致密度达99.48%,其微观硬度(HV),屈服强度、断裂强度、压缩率分别达到725 MPa,2.13 GPa,2.54 GPa,20.1%,合金优异的力学性能主要是因为合金的固溶强化;断裂模式为解理断裂及塑性断裂的混合机制。  相似文献   

19.
研究了TiH2-45Al-0.2Si-5Nb和TiH2-45Al-0.2Si-7Nb 2种粉末的机械合金化过程及放电等离子烧结的微观组织结构特征。结果表明,球磨过程中,在粉末粒度减小的同时有TiAl,Ti3Al和Ti2Al金属间化合物产生。球磨30h时,混合粉末所获得的粒度最小。球磨后粉末采用放电等离子烧结,可在很短的时间内完成烧结过程,烧结组织由细小的球状TiAl和Ti3Al相组成,且随烧结时间增加微观组织晶粒更为细小。  相似文献   

20.
采用铜模喷铸法制备了Mg60Ni23.6Y0.5La15.9块体非晶合金,并对其微观组织结构及电化学性能进行了研究。用XRD和SEM对Mg60Ni23.6Y0.5La15.9非晶合金在充放电过程中的微观结构进行分析。采用自动充放电测试系统对Mg60Ni23.6Y0.5La15.9非晶合金电化学性能进行了测试。结果表明:在吸氢放氢过程中合金的非晶态结构逐步转变为晶态,并且随着循环的进行逐渐形成了Mg2Ni H4、Mg2Ni和Mg(OH)2相。电化学性能测试结果表明:Mg60Ni23.6Y0.5La15.9非晶合金电极的放电容量变化过程可以分为4个阶段,其最大放电容量达到410.5m Ah/g,从而说明非晶结构有可能是非晶电极达到最大放电容量的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号