首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
拉深是利用拉深模具把平板材料变成开口空心零件的冲压过程,是典型的变形工序。通过对不锈钢拉深件成形过程中的滑移状态及应力、应变分析,揭示了不锈钢拉深件成形时的表面划痕出现的根源,进而提出了表面保护的基本方式。  相似文献   

2.
目的研究复杂钣金零件充液拉深的成形性能,以代替传统的落压成形工艺。方法采用有限元方法对成形过程进行模拟,分析各工艺参数对零件成形质量的影响,以及起皱、破裂等缺陷出现的原因和避免方法,并获得合理的工艺参数范围。以仿真结果为依据,设置工艺试验的初始参数,对该复杂钣金零件进行充液成形试验,以验证工艺可行性。结果有限元仿真对成形过程中的起皱和破裂缺陷预测准确,并给出了可行的工艺参数范围;通过成形试验,验证了工艺参数的合理性,获得了合格零件。结论充液拉深工艺可以明显改进零件的成形性能,反胀压力、最大液室压力等是充液拉深工艺的重要参数,直接影响着充液拉深过程的成败。  相似文献   

3.
汽车端盖零件的冲压模具设计   总被引:3,自引:3,他引:0       下载免费PDF全文
首先对端盖零件进行工艺分析,确定该零件成形工艺和模具设计的要点,并提出了最佳成形工艺方案。重点描述了落料拉深冲孔复合模的设计过程,并解决凸凹模的设计,定位精度和冲裁孔拉深变形等问题,为薄壁零件浅拉深成形的模具设计提供参考。  相似文献   

4.
目的研究皮带轮圆筒形凸台多道次拉深成形工艺过程。方法根据拉深系数计算拉深道次,并采用有限元模拟软件模拟分析多道次拉深成形过程。结果根据计算,需采用八道次拉深成形筒形凸台,成形过程中最大等效应力、应变分布在凸模、凹模圆角位置处及筒壁外表。随着道次增多,坯料内累积的等效应力应变值增大。结论八道次拉深成形后,坯料内累积的应力应变值较大,筒形凸台尺寸符合要求,成形质量较好,根据模拟结果成功进行了生产试制。  相似文献   

5.
阶梯形零件拉深工艺及模具设计   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对端盖加工工艺进行分析,介绍了端盖拉深模具结构及工作过程,并进行了工艺计算,提出了拉深凹模和凸模的设计方法,保证了端盖拉深成形的顺利进行.  相似文献   

6.
目的解决板料拉深过程中出现拉裂、起皱、拉深不充分等缺陷的问题。方法利用专业分析板料成形的软件Dynaform,研究分析了非轴对称件矩形盒,在几种典型的变压边力下的拉深成形性能,获得了成形效果较好的加载模式,进而利用仿真软件Dynaform获取了样本数据。结果建立了矩形盒拉深成形变压边力网络模型并对其学习训练,最后对神经网络预测结果及仿真结果所得到的变压边力加载曲线进行多项式拟合,获取了最佳压边力控制曲线。结论在板料拉深过程中,通过控制压边力的大小,能够较好地发挥材料的流动性,改善制件的最终成形效果。  相似文献   

7.
基于数值模拟的盒形件拉深成形变拉深筋技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以盒形件为研究对象,建立了盒形件拉延筋成形的数值模型,分别对盒形件固定拉深筋和变拉深筋成形进行了数值模拟研究,并进行了工程试验的验证,对结果及误差进行了分析,实现了基于拉深筋高度变化的变拉深筋技术.这种方法能有效发挥板料成形性能,提高零件拉深成形质量.  相似文献   

8.
锥形件拉深智能化控制中压边力的控制规律   总被引:5,自引:0,他引:5  
法兰起皱、侧壁起皱和侧壁破裂是拉深成形的主要障碍,而合理控制压边力是防止起皱破裂的关键所在.在总结前期研究成果的基础上,结合拉深成形过程的特点,在成形三极限图中给出了圆锥形零件拉深成形的成功区域,并提出了获得最佳压边力控制规律的方法.这为圆锥形零件拉深成形中的模具设计、工艺参数的制定提供了依据,也为拉深智能化控制提供了保证.  相似文献   

9.
根据某零件宽凸缘深拉深成形工艺中存在的缺陷,对拉深过程中影响零件壁厚差的主要因素进行了分析,找出了缩小相对变形的依据。介绍了凸模浮动拉深成形工艺,综述了浮动凸模的设计要点、模具结构、工作原理及实际应用效果。  相似文献   

10.
板料的温塑性成形方法已经得到广泛使用,可以运用到双相钢激光拼焊板成形中以提高其成形性能。以盒形件为分析对象对双相钢激光拼焊板的温拉深性能进行了研究,通过温单拉实验、盒形件温拉深过程的有限元模拟与实冲实验以及金相实验,分析了双相钢激光拼焊板由常温到500℃各个温度下的力学性能与拉深性能。结果表明:成形温度对双相钢激光拼焊板温拉深影响比较显著,在400~500℃温度范围内进行温成形,能获得较好的成形性能。  相似文献   

11.
目的 研究双筒型带轮多道次拉深成形过程。方法 根据冲压手册计算拉深道次与凸、凹模尺寸,并采用有限元模拟软件DEFORM,模拟分析多道次拉深成形过程。根据理论计算得出需要8道次拉深成形双筒形带轮。结果 随着成形道次的增加,内筒及外筒圆角处累积的应力应变值最大减薄最严重,从外筒至内筒壁厚持续减小,其中内筒底部圆角为厚度最小处。结论 通过8道次拉深的方法成形出所需的零件,零件壁厚达到所需要求,并成功试验出成形质量较好的样件。  相似文献   

12.
目的 针对17-4PH不锈钢冷成形回弹大、贴模性差等问题,研究17-4PH不锈钢隔碗零件的拉深成形和液压胀形规律,确定隔碗零件拉深液压胀形复合成形的最佳工艺及参数.方法 利用有限元方法确定并优化了拉深预成形和液压胀形中的工艺参数.基于优化后的结果设计并制造了相关的模具,最终通过试验验证了有限元方法的有效性.结果 结合数值模拟和试验的方法,提出了零件先拉深预成形、后液压胀形的多步成形方案,逐步优化了成形工艺参数,最终成形出了满足尺寸和精度要求的高精度隔碗零件.结论 通过数值模拟获得了最佳的坯料直径及多步成形中的关键工艺参数,基于数值模拟优化为主和试验验证为辅的设计制造理念,解决了17-4PH不锈钢冷成形回弹大和贴模性差的问题.  相似文献   

13.
多道次拉深复合成形工艺研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以典型深拉深件滤清器罩壳为研究对象,对其原有成形工艺方案进行分析,提出采用多道次拉深挤切复合成形的工艺方案,设计出了集落料、拉深、修边、整形于一体的复合成形模具.提高了生产效率和生产安全性,降低了生产成本.  相似文献   

14.
高精度高强不锈钢隔片零件拉深成形研究   总被引:2,自引:2,他引:0       下载免费PDF全文
通过对15-5PH高强不锈钢高精度隔片零件结构及尺寸公差的工艺分析,明确了零件成形难点.利用有限元拉深成形的结果,确定了刚模拉深成形的方法.基于有限元回弹模拟的结果及试验,对拉深成形模具的理论型面进行了修正,解决了零件的高度及弧面轮廓尺寸精度问题,确定了拉深成形的合理压边力大小.  相似文献   

15.
弹体毛坯热冲拔工艺   总被引:1,自引:1,他引:0       下载免费PDF全文
目的设计弹体毛坯热冲拔成形工艺方案。方法将冲子压入加热后的钢坯,使钢坯在压力作用下充满模腔,压成盂形,然后套在引伸冲子通过一串直径逐渐缩小的模圈,使弹体拉长、直径减小、壁厚减薄,获得合理的弹体毛坯尺寸,生产出合格毛坯。分析弹体毛坯冲拔成形原理、温度控制、工装设计及冲拔过程中的金属流动规律,根据体积不变原理,计算出冲拔毛坯尺寸。结果通过批量试制,根据冲拔过程中常见问题的控制措施,优化了冲拔工艺参数,实现了弹体毛坯热冲拔成形。结论通过冲拔原理分析、毛坯及工装设计,形成了热冲拔设计规范,该弹体毛坯热冲拔工艺可行。  相似文献   

16.
目的 为了提高侧围外板成形裕度,降低拉延开裂风险。方法 运用CATIA软件设计了侧围外板精细化工艺模面,并借助AutoForm软件对侧围外板拉延成形过程进行了有限元分析。结果 在恒定压边力加载的工况下,侧围外板在后三角窗及后门洞区域发生轻微开裂,无法满足成形要求。基于恒定压边力工况条件,对压边力加载方式进一步研究,提出变压边力工况条件,并模拟了9种变压边力加载方式下的成形效果,从中筛选出最优变压边力工况条件,改善了侧围外板拉延成形性,消除了开裂风险。将最优仿真数据用于侧围外板实际试模,试模结果与仿真结果基本一致,零件成形良好,最大减薄率为19.8%,最大增厚率为6.7%,符合产品质量需求,证明了变压边力工艺方案的可行性。结论 变压边力工况条件可以提高零件成形裕度。  相似文献   

17.
2024 铝合金难成形高锥盒形件充液成形数值模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
目的解决锥盒形件传统拉深成形十分困难,废品率高,成形质量差的问题。方法介绍了充液成形工艺的2种方式,即主动式充液成形和被动式充液成形,并利用有限元软件Dynaform对各充液成形方案进行了数值模拟。结果通过模拟分析,明确了2种充液成形方式的优缺点,提出了被动式-主动式充液成形方案,并进行了数值模拟验证;合理的预成形凸模圆角大小是A侧长边底部圆角R=40 mm,B侧长边底部圆角R=30 mm,其他底部圆角R=15 mm。结论充液成形技术与传统拉深相比,具有一定的优势;被动式-主动式充液成形方案数值模拟结果良好;预成形形状对终成形有很大的影响,改变预成形凸模圆角可控制各侧补料量。  相似文献   

18.
目的利用充液成形工艺成形普通拉深工艺难成形的大拉深比筒形件。方法通过理论公式计算了冷冲压工艺成形该制件的道次,利用有限元软件Dynaform对充液成形过程进行了3个步骤模拟,并研究了第1步拉深时初始反胀高度对成形制件减薄率的影响规律。结果利用理论公式计算,传统冲压方法成形拉深比为3.2的筒形件至少需要5个道次,而采用被动式充液成形方法只需要3个道次。每个道次的最大减薄率都在8%以内,最后得到拉深制件的最大减薄率为8.53%,在安全范围以内;第1步充液拉深时,反胀高度分别为1.75,2.75,3.75,4.75,5.75 mm时,得到制件的最大减薄率分别为5.28%,5.08%,4.8%,5.03%,5.03%。结论充液成形工艺较传统冲压工艺可以大大提高板料的成形极限,减少成形道次,成形制件质量好;合适的初始反胀高度,可以减小成形制件壁厚的最大减薄率。  相似文献   

19.
This study proposes to simulate the deep drawing on carbon woven composites in order to reduce the manufacturing cost and waste of composite material during the stamping process, The multi-scale anisotropic approach of woven composite was used to develop a finite element model for simulating the orientation of fibers accurately and predicting the deformation of composite during mechanical tests and forming process. The proposed experimental investigation for bias test and hemispherical deep drawing process is investigated in the G1151 Interlock. The mechanical properties of carbon fiber have great influence on the deformation of carbon fiber composites. In this study, shear angle–displacement curves and shear load–shear angle curves were obtained from a bias extension test. Deep drawing experiments and simulation were conducted, and the shear load–displacement curves under different forming depths and shear angle–displacement curves were obtained. The results showed that the compression and shear between fibers bundles were the main deformation mechanism of carbon fiber woven composite, as well as the maximum shear angle for the composites with G1151 woven fiber was 58°. In addition, during the drawing process, it has been found that the forming depth has a significant influence on the drawing force. It increases rapidly with the increasing of forming depth. In this approach the suitable forming depth deep drawing of the sheet carbon fiber woven composite was approximately 45 mm.  相似文献   

20.
目的研究St16钢板矩形盒拉深的成形性能。方法在St16冷轧薄板进行单轴拉伸试验的基础上,利用有限元软件eta/DYNAFORM,分析了分块变压料力控制技术与优化板坯形状两种工艺方案对矩形盒拉深成形性的影响。结果分块变压料力与优化板坯形状均可以提高矩形盒的极限拉深深度,且优化板坯形状的效果更好。两种方案的综合应用能大幅度地提高矩形盒件的拉深性能。结论通过改善法兰变形流动情况,可以大幅度提高矩形盒拉深成形性,为确定成形工艺和模具设计制造提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号