首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三轴SHPB加载下砂岩力学特性和破坏模式的试验研究   总被引:4,自引:3,他引:1       下载免费PDF全文
利用改造的三轴SHPB动静组合加载实验装置,对均质砂岩进行了不同围压和不同应变率下的三轴冲击压缩试验,作为对比利用RMT-150C试验机也进行了部分准静态下的三轴压缩实验。根据实验结果,分析了围压对砂岩动态冲击性能的影响,并重点讨论了冲击过程中岩石的破坏模式。研究结果表明,在围压一定的情况下,岩石的动态压缩强度随应变率的提高而提高;在应变率相同的情况下,岩石的动态压缩强度和弹性模量会随着围压的增大而增大。岩石发生破坏的临界入射能,随着围压的增大而增大。岩石单位体积吸收能与应变率之间呈线性递增关系,而且递增的程度随着围压的增加而增加。三轴冲击加载下,应变率较低时岩石内部形成压剪破裂面但整体不失稳,应变率很大时岩石破碎形成锥形块体形式。  相似文献   

2.
利用杆径为75mm的SHPB试验装置对5种不同龄期下的混凝土分别进行了冲击压缩试验,系统了解了冲击载荷对不同龄期支护混凝土力学特性的影响。为了进行对比,利用INSTRON系统也进行了相应龄期下的静载压缩试验。试验研究表明:静载下混凝土强度、割线弹性模量随龄期增长而增长,其中强度增长主要集中在龄期7d以前,割线弹性模量增长则集中在龄期14d以后,而峰值应变随龄期增长整体上呈减小的趋势;动载下混凝土强度、峰值应变以及单位体积吸收能随着龄期增长而增长,在各个龄期都表现出对应变率具有一定的敏感性,其中不同龄期混凝土的动态强度随应变率增加呈现指数函数增长趋势。不同龄期的混凝土在动载下以拉伸破坏为主,静载下基本呈现剪切破坏形式。  相似文献   

3.
In this work, we have processed commercial purity tungsten (W) via different routes of equal-channel angular extrusion (ECAE) at temperatures as low as 600 °C. We have systematically evaluated the quasi-static and dynamic compressive behaviors of the processed W. Quasi-static compression tests were performed using an MTS hydro-servo system at room temperature. It is observed that samples ECAE processed at 800 °C show higher yield and flow stresses than those processed at other temperatures; no obvious strain hardening is observed in the quasi-static stress–strain curves. Quasi-static strain rate jump tests show that the strain rate sensitivity of ECAE W is in the range of 0.02 to 0.03, smaller than that of coarse-grained W. Uni-axial dynamic compressive tests were performed using the Kolsky bar (or split-Hopkinson pressure bar, SHPB) system. Post-loading SEM observations revealed that under dynamic compression, the competition between cracking at pre-existing extrinsic surface defects, grain boundaries, and uniform plastic deformation of the individual grains control the overall plastic deformation of the ECAE W. The existence of flow softening under dynamic loading has been established for all of the ECAE W specimens.  相似文献   

4.
为评价冲击荷载下花岗岩残积土的损伤发展规律,基于不同振幅(A=100~400 kPa)、频率(f=3~15 Hz)和围压(σ'3=50~500 kPa)下室内循环冲击试验得到滞回曲线的形态特征,提出4个反映试样在冲击荷载下的能量消耗、损伤程度、刚度衰减和塑性应变发展特性的定量结构损伤参数:累积耗散能量E N、累积损伤度d N、刚度退化度δN和残余塑性应变εN。借助各参数的演化规律和相互关系实现了冲击损伤的定量评价,并提出试样的损伤与破坏机理。结果表明,高振幅(A=400 kPa)、低频及超高频(f=3或15 Hz)的冲击荷载作用下E N增长迅速,试样的d N较大。相同频率和围压下高振幅试样的d N为低振幅试样(A=200 kPa)的9.5倍,同等条件下高频和超高频试样的d N也比中等频率(f=10 Hz)试样的d N高出24%。更高的损伤度引起试样刚度衰减更加严重,发生破坏试样的δN普遍超过0.65。这进一步导致试样εN快速发展,最终产生破坏。高围压(σ'3=500 kPa)下试样能量耗散慢,d N较小,δN仅为低围压(σ'3=50 kPa)的13%,因此抵抗冲击变形的能力也增强。根据试验结果指出,冲击荷载下试样的变形与破坏实质上是冲击能量耗散引起的土体结构损伤,从而导致的刚度衰减进而产生宏观塑形变形累积的综合体现。工程中应尽可能避免采用高振幅与低频率及超高频率荷载冲击土体,必要时可通过挤密加固土体有效防范冲击荷载的危害。研究有助于深化冲击破坏机理的理解,为我国花岗岩残积土地层的施工与设计提供技术指导。  相似文献   

5.
从实验与数值模拟的结合上,确定与考察了镁铝合金在一维应力高应变率压缩状态下的本构关系。把由一维准静态及动态压缩试验结果所拟合的经验性本构关系代入镁铝合金的SHPB试验的全过程数值模拟,可再现实验测得的反射波波形及透射波波形。数值模拟也表明,采用SHPB试验经典分析所估算的应力、应变、应变率与试件典型微元在试验过程中所经受的应力应变、应变率也基本一致,然而,应变率并非常值。  相似文献   

6.
为研究圆钢管玄武岩纤维再生混凝土(BFRRC)短柱的轴压力学性能,以再生粗骨料取代率和玄武岩纤维掺量为变化参数,设计并完成了15根圆钢管BFRRC短柱试件的轴压试验。观察了试件的受力全过程及破坏形态,获取了试件的荷载-位移曲线及荷载-应变曲线,分析了变化参数对圆钢管BFRRC短柱轴压性能的影响,建立了可行的组合截面应力-应变全过程曲线方程。研究表明:试件均发生鼓曲破坏,但核心混凝土在钢管约束下处于碎而不散状态;随着再生粗骨料取代率的增大,试件的耗能性能、延性系数逐渐增大,耗能因子、延性系数提升幅度最高可达1.84%和10.36%,承载力逐渐降低,降低幅度最大达5.03%;随着玄武岩纤维掺量的增大,试件的耗能性能、延性系数逐渐增大,增加幅度最高可达2.97%和4.93%,承载力提高幅度不大;不同的玄武岩纤维掺量下,试件实测的荷载-位移曲线饱满,且具有较长的变形流幅,延性较好。   相似文献   

7.
为研究锡铁山铅锌矿深部石英片岩的力学特性,利用分离式霍普金森杆(SHPB)对埋深8631 264m的试样进行25、30、35MPa轴压下的一维动静加载实验,和采用LS-DYNA软件模拟了25、30、35、40、45、50 MPa轴压情况下的冲击实验。研究结果表明:在冲击作用下,试样的一维动态抗压强度和破坏所需的入射能随着埋深的增加而增加,并呈现出常见的压剪破坏模式;当轴压40MPa左右,埋深1 428m的岩石动态抗压值达到最大;当轴压低于40 MPa时,轴压的增大能加强试样的抗压能力;当轴压大于40MPa时,轴压的增加反而减弱了试样的抗压能力。  相似文献   

8.
采用分离式Hopkinson压杆试验技术,对山西黑花岗岩进行了一系列不同应变率(315.53s-1~1349.87s-1)的动态压缩试验。试验结果表明:山西黑花岗岩在高应变率条件下,动态抗压强度表现出突变特性:应变率从460.09s-1上升到860.20s-1的时候,山西黑花岗岩的动态抗压强度从272.33MPa提高到371.78MPa;在高应变率条件下,山西黑花岗岩材料的破碎机理为在初始冲击波作用区先产生体积破碎,而后在试样后半部分产生赫兹破碎;山西黑花岗岩在高应变率下的弹塑性变形能随应变率的增大而减小,高应变率条件下材料失效和裂纹扩展消耗更多能量,对应更加严重的材料破碎。  相似文献   

9.
This paper documents an investigation into the compressive deformation behaviour of electron beam melting(EBM) processing titanium alloy(Ti-6A1-4V) parts under high strain loading conditions.The dynamic compression tests were carried out at a high strain rate of over1×10~3/s using the split Hopkinson pressure bar(SHPB)test system and for comparison the quasi-static tests were performed at a low strain rate of 1×10~3/s using a numerically controlled hydraulic materials test system(MTS) testing machine at an ambient temperature.Furthermore,microstructure analysis was carried out to study the failure mechanisms on the deformed samples.The Vickers micro-hardness values of the samples were measured before and after the compression tests.The microstructures of the compressed samples were also characterized using optical microscopy.The particle size distribution and chemical composition of powder material,which might affect the mechanical properties of the specimens,were investigated.In addition,the numerical simulation using commercial explicit finite element software was employed to verify the experimental results from SHPB test system.  相似文献   

10.
Abstract

The high temperature deformation behaviour of nickel base superalloy Udimet 520 was characterised using hot compression isothermal tests. Hot compression tests were conducted between 900 and 1150°C with strain rates of 0.001, 0.01, 0.1 and 1 s-1. Testing at ≤ 950°C led to sample fracture for all the applied strain rates. The flow behaviour at 1000, 1050 and 1075°C indicated the occurrence of dynamic recovery. For specimens tested at 1100, 1125 and 1150°C, recrystallisation is the softening mechanism. The strain rate sensitivity factor m was estimated for various thermomechanical histories. The activation energy for the hot deformation was determined to be 780 kJ mol1. The Zener–Hollomon parameter was also determined and its variation with grain size was studied with deformation conditions. The microstructures of all samples were examined by both optical and scanning electron microscopy. The presence and variations in the morphology and size distribution of deformed and recrystallised grains were determined and related to the deformation conditions.  相似文献   

11.
利用Hopkinson压杆对固溶及固溶+时效处理状态的Mg-3.04Li-0.77Sc合金进行高应变率冲击压缩实验,研究了固溶和时效处理后该合金的高应变率变形行为。结果表明,随着应变率提高,固溶及固溶+时效态Mg 3.04Li-0.77Sc合金的动态变形表现为应变率弱化效应。固溶处理可增大合金的最大应变,而时效处理可显著提高该合金的动态屈服强度。组织分析表明,在高应变率冲击载荷下,固溶及固溶+时效态Mg-3.04Li-0.77Sc合金产生了明显的剪切变形局部化现象。热软化及其促使的变形局部化和微裂纹沿变形带产生并扩展是该合金动态变形表现为应变率弱化效应的主要原因。  相似文献   

12.
为提高高轴压比下(低矮)剪力墙的抗震性能,提出采用高延性混凝土(HDC)面层对其加固。设计了3片剪跨比为1.1的混凝土剪力墙,其中1片为对比试件,其余2片分别采用HDC面层和钢筋网HDC面层进行加固。通过拟静力试验,研究剪力墙试件的破坏形态、变形能力、耗能能力及刚度退化特性。试验结果表明:采用HDC面层加固的剪力墙试件,加固层裂而不坏,与内部墙体协同工作性能良好,可对内部混凝土形成一定的约束作用,改善了剪力墙的脆性剪切破坏特征;HDC面层能有效提高剪力墙的受剪承载力、变形能力和耗能能力;在HDC面层中配置钢筋网片使加固面层斜裂缝开展延缓,可充分发挥HDC良好的拉伸性能和耐损伤性能,使加固试件在破坏阶段的刚度退化缓慢。基于软化桁架模型,考虑HDC加固层贡献,提出了加固试件的受剪承载力公式。  相似文献   

13.
采用Φ74 mm的分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)试验装置,对两种尺寸聚丙烯细纤维和一种尺寸聚丙烯粗纤维单掺及混掺的混凝土试件进行冲击压缩试验,对比分析粗、细纤维及不同纤维掺量比的多尺寸纤维混凝土试件在五种不同应变率下的动态压缩强度、动态压缩变形、动态压缩韧性和破坏特征,研究聚丙烯纤维混凝土的动态压缩力学性能.结果表明:随应变率的增加,素混凝土及纤维混凝土的动态压缩强度、动态压缩变形和动态压缩韧性表现出显著的应变率效应;在试验应变率范围内,粗聚丙烯纤维混凝土的动态抗压强度最高,相对素混凝土增幅为132.36%~213.85%;多尺寸聚丙烯纤维混凝土的动态强度增长因子与素混凝土基本一致;掺入多尺寸聚丙烯纤维可有效增大混凝土在不同应变率下的动态峰值应变和动态极限应变;多尺寸聚丙烯纤维混凝土的动态极限韧性较高,其中细聚丙烯纤维含量为1.2 kg/m3时混凝土动态极限韧性最高,增幅为121.11%.  相似文献   

14.
Dynamic deformation and failure behavior of a tungsten heavy alloy (93W) under complex stress condition are studied using a split Hopkinson pressure bar (SHPB) apparatus. Cylindrical, step-cylindrical and truncated-conic specimens are used to generate different stress condition in an attempt to induce strain localization in the alloy. The microstructure of the specimens after tests is examined by optical microscopy and scanning electronic microscopy (SEM). It is found that in all the specimens, except the cylindrical ones, intense strain localization in the form of shear bands is initiated at stress concentration sites. In order to analyze the stress condition of different specimen geometry, finite element simulations are also presented. The Johnson-Cook model is employed to simulate the thermo-viscoplastic response of the material. It is found that dynamic deformation and failure modes are strongly dependent on the geometry of the specimens. The stress condition controlled by specimen geometry has significant influence on the tendency for shear band formation. The adiabatic shear band has general trends to initiate and propagate along the direction of maximum shear stress. It is suggested that further studies on the control of the stress condition to promote shear band formation be conducted in order to improve the penetration performance of the tungsten heavy alloy.  相似文献   

15.
Abstract

Microstructural changes occurring during superplastic deformation of Ti-6Al-6V-2Sn alloy with an initial microstructure consisting of mixed fine lamellar and equiaxed α grains were investigated. Uniaxial tensile tests with constant strain rate were conducted at temperatures ranging from 775 to 925°C and at strain rates rangingfrom 7 × 10-5 to 1 × 10-3 S-l. To investigate the microstructural changes occurring during deformation, some of the tests were terminated at preprogrammed true strains of 0.5, 0.9, and 1.5 for subsequent metallographic investigation. The effects of high temperature exposure on the microstructural changes and on the superplastic deformation behaviour were also evaluated. It was found that both static and dynamic recrystallisation were initiated under certain test conditions and could be related to the flow stress behaviour during the superplastic deformation tests. For tests at low temperature and high strain rate, the flow stress increased quickly at the very beginning of the deformation without significant microstructural change. After the flow stress reached its maximum value, dynamic recrystallisation occurred at a lamellae accompanied by a decrease of the flow stress, known as strain softening. Raising the test temperature or decreasing the deformation strain rate provided the opportunity for thermal energy to initiate static or semidynamic recrystallisation. Thereafter, the flow stress behaviour at the beginning of the test changed to a slow strain hardening type. There also existed a transition temperature; soaking before tensile testing above this temperature would result in static recrystallisation, and the superplastic deformation characteristics would be affected.  相似文献   

16.
Cementitious materials and ceramic aggregates used as basic materials, ceramics–cement based porous material (CCPM) has been prepared. Φ100 mm SHPB has been improved by wave shaping techniques, which can guarantee the availability of the tests. Quasi static compression test and impacting compression test have been carried out, the damage process of specimen under loading has been analyzed, and mechanics parameters under different strain rates have been obtained, moreover, based on this, the mechanical properties of CCPM under impact loading, including strength property, deformation property, impacting toughness, have been studied, in addition, the prospect of CCPM’s application has also been discussed. The results indicate that, the quasi static and impact compressive stress–strain curve of CCPM includes a strain plateau, which helps to better absorb energy; the dynamic strength increase factors of CCPM and the natural logarithm of relative strain rate are of a linear relationship; the relationship between the dynamic peak strain increase factors and the related strain rate can be described with an exponential linear, which shows obvious “damage softening” effect; with the increase of average strain rate, the impacting toughness of CCPM gets strengthened continuously and the impact toughness indexes are in a logarithm relationship with strain rate; CCPM is more strain rate sensitive than ordinary cement based composite materials. Thus it can be seen, CCPM possesses the advantageous mechanical properties of both porous materials and ordinary cement based composite materials. Besides, the material is easy to prepare and simple to make. Along with its high plasticity and low density, CCPM has a promising future to perform its potential advantages in engineering, especially in national defense engineering.  相似文献   

17.
Abstract

The authors present a study on the hot formability of 7020 aluminium alloy. Isothermal hot compression tests of solid cylindrical specimens were performed in the temperature range of 300–550°C and the strain rate range of 0·001–10 s–1. Stress–strain curves obtained from the experiment data are fitted using the Sellars–Tegart constitutive equation to obtain the constitutive parameters. Using the dynamic material model, the authors develop a processing map based on the flow stress data. The map shows that the parameters suitable for hot working are a temperature range of 450–550°C and a strain rate range of 0·001–0·1 s–1. This parameter range is where the efficiency of power dissipation is above 27% and where dynamic recrystallisation occurs. Unstable regions to be avoided in hot forming are deduced from an instability condition. The processing map is validated by comparing the microstructures of deformed compression specimens.  相似文献   

18.
M. R. Allazadeh  S. N. Wosu 《Strain》2012,48(2):101-107
Abstract: The penetrating split Hopkinson pressure bar was used to study the response of dry maple wood under high strain rate impact load. Using longer bar and shorter specimens utilised the assumption of one‐dimensional stress waves travelling along the bars and specimen because the experiment fulfilled the ratio of diameter to length of bars condition in Kolsky bar experiments. The stress–strain relationships and behaviour of the fibre structure materials’ failure were investigated during the compressive dynamic tests at strain rates between 9501 and 2000 s?1. The mechanics of dynamic failure was studied and it was confirmed that deformation of specimen is a linear function of energy absorption by specimens.  相似文献   

19.
Abstract

Plane strain compression tests at 5 s?1 and at temperatures of 270–480°C have been carried out on an Al–1Mg–1Mn alloy containing a bimodal distribution of intermetallic particles and after a prior heat treatment to coarsen all particles to greater than 1 μm in size. During the heat treatment, recrystallisation of the initially hot worked material only proceeded with coarsening of the fine particles. During subsequent hot deformation, thin foil electron microscopy revealed that identical subgrain structures were developed in the two materials by dynamic recovery at temperatures below 450°C. At higher temperatures, the initially recrystallised material showed localised particle stimulated dynamic recrystallisation. The subsequent static recrystallisation rate was more than 103 times faster in the material free from small particles.

MST/751  相似文献   

20.
In this paper, the hot deformation characteristics of P/M nickel-base superalloy FGH96 prepared by different powder preparation technologies were studied in the deformation temperature range from 1000 °C to 1100 °C and the strain rate range from 0.001 s−1 to 1 s−1 using hot compression tests. The peak stress vs. deformation temperature curves and the peak stress vs. strain rate curves were established, respectively. The results show that the specimens prepared by plasma rotation electric pole (PREP) powder were more sensitive to deformation temperature and strain rate. On the basis of the dynamic material model, the processing maps for hot working were developed. The activation energies and Zener-Hollomon parameters were obtained by linear statistical regression method. For the specimens prepared by PREP powder, the peaks of power dissipation mainly located in lower temperature domain (1000-1030 °C), and the efficiencies of power dissipation (EPD) obtained in the strain range from 0.1 to 0.7 were essentially similar. This indicated that strain had a slight influence on processing maps. For the specimens prepared by argon atomization (AA) powder, the effects of strain on EPD and instability domains were significant. The lower activation energies and Z values indicated that the workability of the specimens prepared by AA powder is better than that prepared by PREP powder. Moreover, it was found that effects of the heat treatment time on activation energy and Zener-Hollomon parameter were significant. With the increase of heat treatment time, the dislocation density and the volume fraction of precipitation phase gradually decreased. Microstructural observation demonstrated that the phenomenon of recrystallized grains coarsening existed in the specimens prepared by longer heat treatment time. The heat treatment time of the specimens prepared by AA powder should be appropriately shortened in order to prevent recrystallized grains coarsening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号