首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
使用自行设计的测量纳米流体流动与对流换热性能的实验装置,测量了含有不同体积分数纳米石墨的石墨-水纳米流体雷诺数在3 000~6 500范围内的对流换热系数。实验结果表明:石墨纳米颗粒的加入提高了水的对流换热系数;石墨纳米颗粒在水中的体积分数与对流换热系数近似呈线性关系;努塞尔数Nu随着雷诺数的增大近似线性增大;流动状态下的纳米粒子本身的无规则运动和热散射对对流换热系数的提高有显著影响。  相似文献   

2.
建立了测量纳米流体对流换热系数h的实验系统,在过渡湍流状态下测量了不同碳管含量、不同入口温度以及流速对其对流换热系数的影响,分析了各影响因素的影响程度的大小及作用机理。实验结果表明:碳纳米管的加入改变了水内部的热传递过程,增大了水的管内对流换热系数;相同Re下,随着碳管质量浓度的不断增加,碳管纳米流体的对流换热系数相对基液水显著增加;随着碳管纳米流体入口温度的升高,对流换热系数逐渐增大,增幅变化跟碳管质量浓度有直接关系,例如当碳管质量浓度为0.8、1.0g·L~(-1)时,对流换热系数增幅先增大后减小,而碳管质量浓度达到1.2g·L~(-1)时,对流换热系数增幅加速增大;在碳管质量浓度一定的情况下,纳米流体的流速对h的影响程度比入口温度要大。  相似文献   

3.
对电加热器中纳米流体的传热效果进行了实验研究,采用两步法制备Fe3O4⁃水纳米流体。此外,还研究了质量分数为0.1%~2.0%的Fe3O4⁃水纳米流体在有/无磁场作用下对电加热器换热效率的影响,探讨了磁场作用下纳米流体的强化换热机理。结果表明,与基液(去离子水)相比,无磁场时质量分数为1.0%的Fe3O4⁃水纳米流体可使环境温度提升18.2%;在外磁场作用下,质量分数为1.0%的Fe3O4⁃水纳米流体可使环境温度提升35.1%。研究结果可为纳米流体在电加热器中的强化传热研究提供重要参考。  相似文献   

4.
为了研究氧化物混合纳米流体的粒子混合比对导热系数及粘度的影响,实验采用两步法制备Al2O3-CuO/乙二醇-水混合纳米流体,并用Hot Disk 2500S热常数分析仪及DV3T粘度仪测量了温度范围为20~60℃、20 nm Al2 O3与40 nm CuO颗粒体积比为20:80~80:20的导热系数和粘度值.结果表明,导热系数和粘度均随着小粒径氧化铝颗粒含量的增大而增大,但在粒子比为50:50时导热系数出现最低值.从纳米层结构和颗粒聚集形态分析可知,小粒径颗粒能很好地填充于大粒径颗粒形成的缝隙中,形成"20 nm Al2 O3粒子-基液分子-40 nm CuO粒子"界面纳米层,界面热阻降低,导热系数增大.但是,通过透射电镜图可知在粒子比为50:50时,各颗粒结合不好,形成的团聚体尺寸大,造成局部粒子空白区,导致导热系数下降.最后,分析纳米流体的综合传热性能,Al2 O3-CuO/乙二醇-水混合纳米流体在研究工况内均适合应用于层流流动与传热过程;在紊流时,由于流动扰动强度大,仅当粒子比小于40:60时适合应用于紊流流动与传热过程.  相似文献   

5.
为了研究高温冷却条件下,γ-Al2O3-PG90纳米流体作为冷却介质在一车用机油冷却器内的流动传热性能,采用三维k-ε湍流模型,应用块结构网格生成技巧,融合流固耦合研究方法和薄壳导热模型数值模拟了纳米流体的性能,进行了基液与纳米流体的性能对比计算,分析了纳米粒子体积分数对性能的影响,考察了纳米流体物性预测模型的普适性,并研究了将纳米流体视为单相流体进行性能分析的可行性,通过实验测试得到了性能数据.研究发现:与基液相比,纳米流体强化换热效果明显,流动阻力有所增加,随着纳米粒子体积分数的增加,传热性能提高,流动阻力增加,说明该物性预测模型不能普适,当纳米粒子体积分数大于3%时,将纳米流体视为单相流体的性能研究结果与实验数据偏差较大,可能原因是单相流体流动无法反映较多的粒子之间的相互作用.  相似文献   

6.
发动机冷却系统内纳米流体强化换热模拟   总被引:2,自引:0,他引:2  
为了提高发动机的经济性、可靠性,研究了以纳米流体作为冷却系统内的新型高效换热工质时的传热效果.分别对水、TiO2纳米流体、Al2O3纳米流体和CuO纳米流体的冷却效果进行了模拟研究,得到了冷却系统的换热系数及压力分布图.研究结果表明:TiO2、Al2O3和CuO这3种纳米流体能显著提高发动机的散热性能,与水相比,三者的平均表面换热系数分别提升了10.82%、8.43%和11.24%,而泵功则分别只增加了1.06%、1.30%和1.98%.以纳米流体作为冷却介质时,能以很小的泵功损失增加量带来换热系数的大幅度提高,有利于增强冷却系统的换热.  相似文献   

7.
以脂肪醇聚氧乙烯醚(AEO-3)、氯化亚砜和N,N,N',N'-四甲基-1,4-丁二胺为原料,通过两步法合成一种Gemini阳离子季铵盐型表面活性剂(氯化N,N,N',N'-四甲基-N,N'-双十二烷基聚氧乙烯醚-1,4-丁二铵盐)。通过傅里叶变换红外光谱FTIR和核磁共振氢谱H1NMR对其结构进行表征。利用合成的表面活性剂改性Fe3O4纳米粒子,得到室温下具有流动行为的无溶剂Fe3O4纳米流体,通过FTIR表征流体结构,流体所含无机粒子质量分数为13.1%,Fe3O4纳米粒子呈单分散,粒径为15~20 nm。  相似文献   

8.
从影响管内对流换热的因素出发,对近年来国内外学者的研究成果进行了综合分析,包括管内流体流动状态、表面形状、物性、脉动等对管内对流换热的影响.介绍了利用缩放管、金属泡沫管、纳米流体、高压电场等强化换热的方法.对中高温太阳能热利用系统中大温差管内对流换热的应用及其强化方法进行了展望.  相似文献   

9.
采用共沉淀法制备核层为四氧化三铁(Fe3O4)壳层为聚乙烯亚胺(polyethyleneimine,PEI)的磁性复合纳米粒子Fe3O4-PEI.扫描电子显微镜和透射电子显微镜表征结果显示,制备的磁性复合纳米粒子Fe3O4-PEI粒径均匀,直径约为25 nm.通过振动样品磁强计比较Fe3O4-PEI和Fe3O4纳米粒子的磁滞回线,结果表明,经PEI包覆后复合纳米粒子饱和磁化值为38.2 emu/g,仍具有较好的磁性.热重分析表明,包覆在Fe3O4纳米粒子表面的PEI质量分数约为23.26%.通过静电作用,实现了Fe3O4-PEI复合纳米粒子对葡萄糖氧化酶的负载,以铂电极为基底电极,制备了Fe3O4-PEI-GOx/Pt葡萄糖传感器.在最优测试条件下,该修饰电极对葡萄糖表现出优异的电化学催化性能,具有灵敏度高、抗干扰能力强、稳定性好的特点.  相似文献   

10.
不同体系对流传热膜系数测定的实验研究   总被引:1,自引:0,他引:1  
选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、乙醇水溶液蒸汽—空气传热系统,分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。普通管换热器对流传热膜系数的关联式:Nu=0.01473Re0.61Pr0.4;强化管换热器对流传热膜系数的关联式:Nu=0.0251Re0.821Pr0.4;其计算值与实验结果符合良好。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。  相似文献   

11.
Convective heat transfer and flow characteristics of Cu-water nanofluid   总被引:15,自引:0,他引:15  
An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nanofluid, a new convective heat transfer correl  相似文献   

12.
Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytically using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are determined analytically. The influence of pertinent parameters such as magnetic parameter, nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. Results indicate that skin friction coefficient decreases with increase of magnetic parameter, nanofluid volume fraction and viscosity parameter. Nusselt number increases with increase of magnetic parameter and nanofluid volume fraction while it decreases with increase of Eckert number and viscosity parameter.  相似文献   

13.
将Helmhotz共振腔应用于换热器来增强换热是一种新的强化换热方法。本文作者通过实验研究了Helmhotz共振腔对换热器的换热强化效果,分析了各种参数对换热效果的影响,得到了对流换热系数及换热强化比随流速的变化规律,结果对工程设计及进一步的研究具有重要的指导意义。  相似文献   

14.
在低粘度流体下对扰流子折流杆换热器和折流杆换热器进行了传热性能和阻力性能的对比实验研究。实验以水作为传热介质,热水走壳程,冷水走管程。实验时壳程流体流动状态基本恒定,而管程流体发生变化。通过实验数据的分析关联,得到了加入扰流子后管程对流传热系数的近似计算模型。结果表明,当雷诺数的范围为104 ~5 ×104 时,管程对流传热系数增加的幅度高于阻力增加的幅度,管程对流传热系数和换热器总传热系数分别提高50 % 和10 % 以上。说明对水这样的低粘度流体,在传热湍流区( 即雷诺数大于104 的范围) ,可以采用较大节距的扰流子来强化传热,以取得较佳的综合效果。  相似文献   

15.
基于欧拉-拉格朗日方法对煤气化辐射废锅内高温气固两相流动传热传质特性进行了三维数值计算,水冷壁上的灰渣沉积过程采用熔渣沉积反弹模型描述。结果表明:灰渣沉积主要发生在辐射废锅的中下部,射流区流速和温度在距离底部5.5 m处迅速衰减,灰渣厚度和导热热阻在此处迅速增加,对流辐射复合换热系数和传热系数在此处迅速下降;随着入口温度的升高,壁面沉积厚度和导热热阻逐渐升高,对流辐射复合换热系数和传热系数由于温差的影响也逐渐升高;随着操作压力的升高,壁面沉积厚度和导热热阻逐渐下降,对流辐射复合换热系数和传热系数逐渐升高。  相似文献   

16.
为深入研究不同实验条件下新型弹性管束的传热特性,建立了传热综合实验台,计算得到了管束管外、管内及总传热系数随Re的变化曲线图。实验结果表明:新型弹性管束的管外平均表面传热系数基本为同Re数下的固定管束的3倍以上,强化传热效果明显。对比不同条件下的实验结果可以得出,汽-水换热条件最好、水-水换热条件次之、恒热流条件最差。原因为管内流体介质对弹性管束的振动特性影响较大,振动特性增强使得传热特性增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号