首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 131 毫秒
1.
张志刚 《煤矿开采》2012,(5):4-6,13
利用自行研制的真三轴煤岩渗透测试系统对煤样试件进行了不同应力条件下不同吸附瓦斯压力的渗透率测定,研究了吸附与应力耦合作用影响下煤体瓦斯渗透规律。结果表明:在一定应力条件下,随着煤样内瓦斯吸附量的降低,渗透率可能会出现2种情况:一是渗透率将不断地增加;二是渗透率先减小,当减小到最小值后,渗透率将不断增加。在瓦斯压力一定的条件下,降低煤样所受围压,渗透率与围压间较好地符合负指数函数的关系。  相似文献   

2.
煤体变形和瓦斯渗流的耦合作用是煤矿瓦斯突出机理研究中的重要问题,煤渗透率的变化与其应力状态密切相关。为了理清有效围压对煤体渗透性的影响,对煤样进行了不同瓦斯压力下全应力应变过程的渗透性实验,分析了瓦斯压力对煤样强度和渗透率的影响;针对不同瓦斯压力,设计完成了相同有效围压下三轴压缩力学实验(无瓦斯作用);并利用孔隙介质力学的分析方法,依据应力应变数据计算了煤样孔隙度。研究发现,有效围压相同条件下的煤样孔隙度计算结果与渗透率实验结果的变化趋势一致;在三轴压缩实验条件下,煤样峰值强度前的渗透率降低幅度受有效围压的控制,有效围压越高,渗透率所历经的降低幅度越大。  相似文献   

3.
池佃益  赵东  王毅 《中国煤炭》2015,(3):101-104,117
采用自主研制的煤岩三轴变形—渗透试验台,针对取自山西沁水煤田3#煤层的试验煤样进行煤体吸附过程中的应力应变和渗透特性试验研究。结果表明:自由状态和外部压力加载状态下,煤体的变形均随吸附瓦斯压力的增加而分阶段地逐渐增加,直至较高压力时变形趋于平衡;煤体变形量随吸附量的增加而有规律地增加,表现为开始阶段增长趋势较慢,后期变化较快;在同等的瓦斯吸附压力状态下,吸附量及其对应的煤体渗透率随轴压和围压的上升而逐渐下降,下降规律接近线性;在相同的轴压和围压的组合下,吸附瓦斯的煤体渗透率随瓦斯压力的增加而逐渐增加,规律是线性的。  相似文献   

4.
成小雨  程成  陈龙  高涵  赵刚 《煤矿安全》2022,(12):115-120
为了改进含瓦斯煤多场耦合条件下的基础实验研究,自主研发了含瓦斯煤多场耦合渗流解吸实验系统,主要由恒压自动充气吸附单元、煤样瓦斯“面扩散”渗流解吸装置、瓦斯抽采单元、应力加卸载单元、非接触式应变测量单元、声发射监测单元、多参监测单元和实验系统管理软件组成;并应用该系统进行了煤体甲烷吸附解吸实验和含瓦斯煤受载过程中应力-应变-渗透规律研究。研究表明:煤体的吸附和解吸均符合指数函数,解吸率先快速增大后缓慢增加最终达到了平衡状态;同一时刻,随着粒径的减小,煤体吸附平衡时间越短、解吸率和解吸总量越大;含瓦斯煤应力-应变-渗透过程呈阶段特性,煤体渗透率在压密阶段快速降低;弹性变形阶段应变快速增大,渗透率缓慢降低并达到最小值;屈服阶段渗透率缓慢增加,峰后软化阶段渗透率快速增大。  相似文献   

5.
祝捷  唐俊  王琪  王全启  张博  张犇 《煤炭学报》2019,44(6):1764-1770
与气体压力有关的煤层渗透率变化规律是煤矿开采和煤层气开发过程中的重要问题,不同应力条件下,不同类型煤样的渗透率演化特征不同。为了研究瓦斯压力变化过程中煤样渗透性的变化规律,以开滦赵各庄煤矿9号煤层的煤样为研究对象,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,在恒定温度、轴压和围压,降低瓦斯压力的实验条件下测定了煤样应变和瓦斯渗透率。实验结果表明:随着瓦斯压力的降低,煤样收缩应变加剧,渗透率表现为两种变化趋势:逐渐增大和先减小后增大(渗透率回升对应的瓦斯压力小于1. 0 MPa)。瓦斯压力降低至0. 3 MPa时,渗透率为初始条件下(瓦斯压力2. 0 MPa)渗透率的1. 9~2. 9倍。考虑到煤样在径向和轴向的收缩应变数值接近,针对三维变形煤样建立了渗透率模型,模型同时体现了气体压力和气体解吸对渗透率的影响。理论分析表明,降压过程中煤的渗透率将在某一气体压力(反弹气体压力pr)时由降低转为升高。推导的反弹气体压力pr计算公式显示pr的取值由煤样的体积模量K、与吸附效应有关的Langmuir系数εp和pL共同决定;体积模量K与吸附变形系数εp越大,pr越大。值得注意的是,pr的取值与煤样的外部应力以及内部的气体压力无关。结合本文和前人的实验数据,由本文的渗透率模型计算得到了不同应力和瓦斯压力条件下的煤样渗透率变化曲线以及相应的反弹气体压力pr。模型计算结果与实验数据接近,最大相对误差低于8. 9%。研究表明,实验测得煤样的渗透率表现为何种变化趋势,取决于反弹气体压力pr和实验气体压力的关系。当pr≥pmax(实验测点中最大的气体压力值)时,渗透率随着气体压力增大而降低;当pr≤pmin(实验测点中最小的气体压力值)时,渗透率随着气体压力增大而增大;当pminprpmax时,随瓦斯压力的增大,煤样渗透率呈"V"形变化,即先减小后增大。  相似文献   

6.
原煤渗透率影响因素的实验研究   总被引:1,自引:1,他引:0  
王振 《煤矿安全》2011,42(12):4-6
利用三轴渗透实验装置,进行了不同围压、不同瓦斯压力、不同温度水平下原煤试样的渗透率实验,得到了以上3种因素对渗透率的影响规律。实验结果表明:随围压的降低,渗透率逐渐增大;随着煤样中吸附瓦斯压力的增高,瓦斯气体流量则随之增大,而煤样的渗透性呈下降趋势;相比于围压和吸附瓦斯压力,温度对煤样渗透率的影响程度则大为降低。  相似文献   

7.
受载含瓦斯煤渗透性影响因素分析   总被引:1,自引:0,他引:1  
为了探讨受载含瓦斯煤体渗透性的影响因素,利用自主研制的含瓦斯煤热-流-固-力耦合实验装置,研究了不同有效应力、不同孔隙压力和不同温度条件下煤样瓦斯渗透特性,在考虑吸附变形量、孔隙气体压缩量和温度膨胀变化量的基础上,分别建立了受载煤体渗透性与有效应力、孔隙压力和温度之间的定性定量关系。研究结果表明:1)在温度一定情况下,煤样渗透率随有效应力的增大而呈现负指数变化关系;2)将围压轴压固定,在考虑Klinkenberg效应情况下,煤样渗透率与孔隙压力呈现"V"字型变化关系,并根据实验结果,得到了围压为2.0,3.0 MPa条件下Klinkenberg效应发生的孔隙压力临界值;3)不同温度条件下,有效应力与渗透率并非单调函数,而存在一个转折点,在低应力区,渗透率随温度升高而增大,表现为以向外膨胀为主导;在高应力区,透率随温度升高而降低,表现为以内膨胀为主导;根据实验结果,提出了应力与温度共同影响下的渗透率计算式。  相似文献   

8.
《煤矿安全》2015,(10):11-14
利用三轴应力渗流实验装置对坚固性系数为0.3的构造煤原煤煤样进行了加压破坏以及负压条件下含瓦斯构造煤原煤煤样的瓦斯渗透性实验研究。结果表明,坚固性系数为0.3的构造煤原煤样的压裂过程经历了非线性压密阶段、线弹性阶段、应变强化阶段、应力跌落阶段和应变软化阶段等5个阶段。在围压、瓦斯压力一定,同一轴压条件下,加载负压时的煤体瓦斯渗透率要大于不加载负压时的煤体瓦斯渗透率,随着负压增大瓦斯渗透率随之增大。在围压、瓦斯压力一定,同一负压条件下,随着轴压的增大,瓦斯渗透率先逐渐增大到一定峰值后逐渐减小。在围压、负压一定,同一轴压条件下,瓦斯压力越大,煤体的瓦斯渗透率越小。在围压、负压、瓦斯压力一定的条件下,轴压加载到σo值后,开始卸载轴压,随着轴压的卸载煤体瓦斯渗透率逐渐增大,在轴压卸载的初始阶段,渗透率增幅较大;随后在轴压卸载完全的过程中,渗透率的增幅越来越不明显,并且轴压卸载为0时的渗透率要小于煤样试件在加载轴压前的初始渗透率。  相似文献   

9.
魏建平  王登科  位乐 《煤炭学报》2013,38(Z1):93-99
利用自主研发的含瓦斯煤岩三轴压缩实验系统,进行了受载含瓦斯煤的渗透特性实验,对比分析了受载含瓦斯型煤与原煤两种典型煤样的渗透特性之间的异同。研究结果表明,控制煤体渗透率大小的直接原因是有效孔隙度而非总孔隙度,有效孔隙度大,则渗透率大。在恒定瓦斯压力条件下,型煤与原煤的渗透率随围压的增大而减小,均服从负指数函数变化规律;相同实验条件下,型煤渗透率普遍远大于原煤渗透率,且型煤渗透率随围压下降的速度比原煤的快。在恒定围压条件下,型煤与原煤的渗透率呈现先减小后增加的趋势,在瓦斯压力p<1.0 MPa范围内均具有明显的Klinkenberg效应。全应力-应变条件下,瓦斯渗流规律与煤样的破坏形式相关,煤样渗透率都表现出先减小后增大的现象,并且具有一般的“V”字型变化规律。  相似文献   

10.
为深入研究煤体在不同压力条件下吸附瓦斯特性及煤体孔隙结构变化特征,利用核磁共振(NMR)技术对煤体吸附瓦斯进行实验研究。实验结果表明:实验煤样的微小孔峰面积中大孔峰面积裂隙峰面积,表明煤样的微小孔最为发育,煤体孔径以微小孔为主,空隙之间的连通性不强,瓦斯不易流通;随着压力的增加,当瓦斯压力达到一定程度后,煤体会产生新的孔隙,微小孔隙相连通构成了微孔或者中孔,中孔相互连通形成了裂隙,为下一步解吸瓦斯的流通提供了条件,出现瞬时的瓦斯快速解吸;煤样瓦斯吸附解吸特征按照峰值前后分为上升阶段、变化剧烈阶段和基本不变阶段,总体规律上,煤体瓦斯吸附量随着瓦斯压力的增大而增加;在不同的瓦斯压力作用下,核磁共振T_2谱图核磁信号幅度发生显著变化,T_2谱图分布面积与瓦斯压力呈线性关系逐渐增长,即煤体孔隙度随瓦斯压力增加而增加。  相似文献   

11.
孔隙结构控制下的煤体渗透实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘永茜  侯金玲  张浪  樊少武 《煤炭学报》2016,41(Z2):434-440
煤层为典型的双重孔隙介质体,其渗透能力受孔隙和裂隙结构参数控制。通过建立描述煤体孔隙和裂隙渗透率统一数学模型,将煤体内气体渗流分为孔隙控制型、裂隙控制型和孔隙-裂隙联合控制型3类;借助6组煤样气体渗流实验数据和孔隙裂隙的测试统计,讨论了不同孔隙特征的渗透率差异原因。研究发现,孔隙和裂隙的结构参数决定了煤体的压缩系数和孔渗指数,进而决定了其渗流类型,影响煤体渗透率敏感性的关键因素是裂隙的密度和尺度,微孔中的气体分子受范德华力影响导致渗透率的应力敏感性几乎无法体现。  相似文献   

12.
程国强  赵芳  尚永会  谭云亮 《煤炭学报》2016,41(5):1152-1157
应用光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法对煤层瓦斯渗流进行模拟研究。针对非均质煤层瓦斯瞬态渗流问题,利用Fortran语言编制了变系数瓦斯渗流偏微分方程的求解程序,通过虚粒子法处理边界条件,构建了无网格性质的SPH瓦斯渗流模型。进行了不同原始瓦斯压力和透气性系数时常系数渗流方法下结果的误差分析,同时考虑透气性系数受矿山压力及Weibull分布影响的非均质煤层,分析了非均质煤层中瓦斯压力及涌出量的变化规律。模拟结果表明:应用SPH方法能很好的模拟煤层的瓦斯渗流;矿山压力影响以及透气性系数按Weibull分布赋值的非均质煤层都会导致瓦斯渗流的非线性。  相似文献   

13.
张磊  王浩盛  袁欣鹏  谷超 《煤炭工程》2022,54(7):104-108
为揭示煤岩变形对煤层瓦斯抽采渗流特性的影响,开展了煤层瓦斯抽采气固耦合问题研究。首先,考虑煤吸附解吸变形、孔隙压力及渗透性变化对瓦斯抽采的影响|然后,根据达西定律,建立以有效应力及吸附应变为耦合媒介的煤层瓦斯渗流和煤岩变形气固耦合方程|最后,以沙曲矿24208工作面为工程背景进行抽采煤层位移、吸附应变和瓦斯渗流数值模拟,并对比分析煤层瓦斯压力、煤层渗透率和瓦斯抽采量的耦合效应。结果表明:抽采后钻孔周围煤体位移呈增大趋势,煤体因瓦斯解吸收缩变形,距抽采孔越近应变量越大|抽采初期煤层瓦斯压降梯度大|煤层渗透率随抽采时间呈增大趋势,距孔越近增幅越大|初期钻孔瓦斯抽采量较大但降幅较快,后趋于稳定,对比发现模型抽采量计算结果与实际抽采数据较为一致。  相似文献   

14.
以淮北青东煤矿8号突出煤层煤样为研究对象,利用自行研制的径向瓦斯渗流实验系统,结合保护层卸压边界区地应力及瓦斯压力分布特征,进行变轴压、变瓦斯压力、变钻孔孔径条件下突出煤样径向瓦斯渗流试验。试验结果表明:相同轴压下,径向瓦斯渗流量随瓦斯压力增加而增加,成二次多项式关系,渗透率随瓦斯压力增加,在0~0.6 MPa内迅速降低,随后缓慢下降,并趋于稳定;相同瓦斯压力下,渗透率随覆压增加呈线性递减趋势;受钻孔卸压影响,在低轴压阶段,大孔径松软低强度试样渗透率显著高于小孔径试样的渗透率,随轴压增加,两者渗透率逐渐趋于一致。  相似文献   

15.
瓦斯压力对原煤渗透特性的影响   总被引:14,自引:1,他引:13       下载免费PDF全文
以松藻煤电公司渝阳煤矿8号突出煤层原煤试样为研究对象,利用实验室研制的三轴渗透仪,进行不同轴压围压条件下瓦斯压力对突出原煤渗流特性试验。试验结果表明,瓦斯渗流速度随着瓦斯压力的增加而增加,呈显著的二次多项式函数关系;随着瓦斯压力的增加,突出煤体的渗透率呈现出先减小后增大的趋势,具有明显的Klinkenberg效应;渗透率随瓦斯压力的增加呈“V”字形变化,具有明显的阶段性;随着瓦斯压力的增加,Klinkenberg系数b与绝对渗透率Kg之间呈显著的幂函数关系;瓦斯压力p与渗透率K之间呈显著的二次多项式函数关系。  相似文献   

16.
不同应力路径下含瓦斯煤渗透特性的实验研究   总被引:5,自引:0,他引:5  
通过对含瓦斯煤渗透特性的实验研究,系统分析了不同应力路径下含瓦斯煤的渗透率变化规律,建立了含瓦斯煤渗透率与轴向压力、围压及瓦斯压力等之间的定性与定量关系,探讨了不同应力路径下含瓦斯煤渗透性的控制机制和变化规律。结果表明应力路径对含瓦斯煤的渗透率有着重要影响:1)含瓦斯煤渗透率随着轴向压力和围压的增加而减小,随瓦斯压力的增加而增加。2)含瓦斯煤渗透率与轴向压力、围压和瓦斯压力呈指数关系变化。3)三轴压缩下全应力-应变实验过程中,含瓦斯煤的渗透率呈"V"字型走势;渗透率随煤样的应变先减小后增大,然后达到最大值,而且渗透率的增加速率小于其减小速率。  相似文献   

17.
含水率对含瓦斯煤的渗流特性影响试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
魏建平  位乐  王登科 《煤炭学报》2014,39(1):97-103
利用自主研发的三轴煤岩瓦斯渗流试验系统,测定煤样在含水率、围压和瓦斯压力的不同组合情况下的渗流量,得到含水率与含瓦斯煤渗透特性之间的关系表达式,揭示了受水分影响的含瓦斯煤渗透特性的一些新的认识:① 不同含水率煤样,固定瓦斯压力条件下,含瓦斯煤渗透率随围压的增大而减小,且呈指数函数关系;② 不同含水率条件下的含瓦斯煤,随着瓦斯压力的增大,含瓦斯煤渗透率的先减小后增大,呈现出“V”字型变化趋势,具有明显的Klinkenberg效应;③ 瓦斯压力对含瓦斯煤渗透性的影响大于围压的影响;④ 恒定温度环境条件下,含水率对含瓦斯煤的渗透性有很明显的影响,随着煤样中含水率的增加,含瓦斯煤的渗透率逐渐减小,整体呈负指数关系。  相似文献   

18.
煤岩体是一种多孔介质,地下开挖使岩体的应力状态发生改变,导致岩体的力学性质和渗透性质发生改变,围岩应力状态和渗流场特性是获取储层瓦斯气、评价或计算矿井涌水量、防突水危害等具体工程问题的理论基础和科学依据。通过对淮南矿区煤岩进行三轴压缩全过程渗透性试验,分析了煤岩变形破坏全过程以及不同围压和瓦斯压力下的瓦斯渗透特性。得出煤岩全应力—应变曲线与煤岩瓦斯渗透率—全应力应变曲线之间的对应关系。结果表明:在微型裂隙闭合和弹性变形阶段,煤样渗透率随应力增大而减小,进入屈服阶段后,渗透率达到最小值并在峰值后呈持续增大之势;固定瓦斯压力作用下,煤样应力峰值随着围压的增加而逐渐增大,煤样渗透性与围压关系呈指数函数变化规律,且表现出应变滞后的特点;固定围压作用下,渗透率与瓦斯压力关系呈“V”字型走势,即在扩容阶段煤岩样渗透性达到最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号