首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用自制抗菌母料S1–AMB[含nano-Zn O和叶绿素酮酸(CCA)]和S2–AMB(只含nano-Zn O)分别与聚乳酸(PLA),柠檬酸三丁酯(TBC)热机械共混制得PLA/S1–AMB/TBC和PLA/S2–AMB/TBC纳米复合抗菌材料。对比研究了不同nano-Zn O含量的两类复合材料对大肠杆菌抗菌性能和力学性能的影响。结果表明,CCA的加入使PLA/S1–AMB/TBC复合材料的抗菌性能和断裂伸长率大幅度提高;当nano-Zn O/CCA质量比为18/6,nanoZn O质量分数为1.2%时,复合材料的抗菌率达到99.5%,为强抗菌材料;和PLA/S2–AMB/TBC相比,其断裂伸长率提高17.8倍,是纯PLA的16.4倍;缺口冲击强度、弯曲强度和拉伸强度保留率分别为76.0%,85.8%,92.0%;不加CCA时,PLA/S2–AMB/TBC的抗菌率仅为4.2%,不具备抗菌性能。  相似文献   

2.
在聚乳酸(PLA)/自制抗菌母料(AMB)纳米复合材料中添加扩链剂甲苯二异氰酸酯(TDI),研究了TDI含量对纳米复合材料抗菌性能和力学性能的影响。结果表明,TDI质量分数在0~2.5%范围内,随着TDI含量的增加,复合材料对大肠杆菌的抗菌性能逐渐轻微减弱,但仍为强抗菌材料;拉伸强度、缺口冲击强度和弯曲强度逐渐增加,断裂伸长率先增加后减小。当TDI质量分数为2.5%时,复合材料的综合性能最好,与PLA/AMB相比,其拉伸强度、断裂伸长率、缺口冲击强度和弯曲强度分别提高了7.9%,147.6%,29.4%和22.0%,抗菌率为99.1%,仍为强抗菌材料。  相似文献   

3.
以国内试产的聚对苯二甲酸乙二醇1,4环己烷二甲醇酯(PETG)为基体,以叶绿素铜酸(CCA)及纳米氧化锌(nano-ZnO)作为复合抗菌剂,采用熔融复合工艺制备了PETG/nano-ZnO/CCA纳米复合抗菌材料,考查了nano-ZnO/CCA 质量配比对PETG抗菌性能和力学性能的影响。结果表明,当复合材料中nano-ZnO中的含量为1 %(质量分数,下同)、CCA的含量为0.5 %时,复合材料对大肠杆菌的抗菌性能最佳,达到99.9 %。  相似文献   

4.
将环氧系扩链剂ADR添加到聚乳酸(PLA)/Nano-ZnO/叶绿素铜酸(CCA)纳米复合抗菌材料中,研究了ADR添加量对复合材料抗菌性能和力学性能的影响。结果表明,在ADR质量分数为0%~1.0%范围内,随ADR含量的增多,复合材料对大肠杆菌的抗菌性能略有减弱,其缺口冲击强度有较大幅度的增加,弯曲强度、拉伸强度略有增加,断裂伸长率先增大后减小,ADR质量分数小于1.0%时仍属强抗菌材料。当ADR质量分数为1.0%时复合材料的综合性能较好,其抗菌率为99.4%,拉伸强度、断裂伸长率、缺口冲击强度、弯曲强度分别比PLA/Nano-ZnO/CCA复合材料提高了4.6%,11.6倍、71.4%,4.8%。  相似文献   

5.
以聚丙烯(PP)为基体,聚乳酸(PLA)和纳米碳酸钙(CaCO_3)为增韧、增强组分,利用熔融共混制得PP/PLA/CaCO_3复合材料,通过对复合材料力学性能、耐热性能、流变性能与结晶形态的表征,研究了PLA和纳米CaCO_3对复合材料性能的影响及其机理。结果表明,当PP与PLA共混时,形成连续空间网络结构PLA有助于改善PP的性能,PLA质量分数为20%时综合力学性能最佳,与纯PP相比,PP/PLA复合材料的拉伸强度和缺口冲击强度分别提高5. 14%和54. 35%,断裂伸长率降低62. 47%。向PP基体中引入的纳米CaCO_3通过"滚珠增韧"和"异相成核"作用明显改善复合材料力学性能,纳米CaCO_3质量分数为15%时,在PP/PLA中均匀分散产生的晶粒细化作用效果最为显著,PP/PLA/CaCO_3复合材料的综合力学性能达到最佳,拉伸强度、断裂伸长率和缺口冲击强度分别比未添加CaCO_3时提高了15. 23%、2. 67%和5. 63%。  相似文献   

6.
在聚乳酸(PLA)中添加不同含量的聚己内酯(PCL)和滑石粉,同时添加增容剂柠檬酸三丁酯(TBC),通过熔融共混制备一系列PLA/PCL/滑石粉复合材料。主要研究了PCL、滑石粉以及TBC对PLA力学性能和结晶性能的影响。结果表明,PCL提高了PLA的韧性,但降低了强度,滑石粉主要起到了增强作用,但降低了PLA韧性,而将两者共同添加到PLA中可以起到一定的增强增韧作用,其异相成核作用也提高了PLA的结晶度。增容剂TBC的加入,改善了PLA和PCL的相容性,提高PCL的增韧效果以及复合材料的结晶度,但略微降低了PLA的拉伸强度。当PCL和滑石粉质量分数均为10%且加入0.5份的TBC后,PLA/PCL/滑石粉复合材料的断裂伸长率、拉伸强度、结晶度分别为13.3%,61.6 MPa,43.0%,相比纯PLA分别提高了533%,2%,73.4%。  相似文献   

7.
通过熔融共混制得聚丙烯/聚乳酸/纳米碳酸钙(PP/PLA/CaCO3)复合材料,考察了PLA和纳米CaCO3对复合材料力学性能、热性能、流变性能与结晶形态的影响及其作用机理。结果表明,复合材料中形成连续空间网络结构的PLA有助于改善PP的性能,PLA含量为20 %(质量分数,下同)时复合材料综合力学性能最佳;与纯PP相比,加入PLA后的复合材料拉伸强度和冲击强度分别提高5.1 %和54.4 %,断裂伸长率降低62.5 %;纳米CaCO3通过“滚珠增韧”和“异相成核”作用明显改善复合材料力学性能,纳米CaCO3含量15 %时产生的晶粒细化作用效果最为显著,复合材料综合力学性能达到最佳,拉伸强度、断裂伸长率和冲击强度分别比未添加CaCO3时提升了15.2 %、2.7 %和5.6 %。  相似文献   

8.
将纳米ZnO(nano-ZnO)用钛酸酯偶联剂表面处理后制备聚丙烯(PP)/nano-ZnO复合材料。研究了nano-ZnO含量对复合材料耐老化性能的影响。nano-ZnO可明显改善PP树脂的紫外光老化性能。当w(nano-ZnO)为3%时,复合材料老化前后的性能差和纯PP树脂老化前后的性能差分别为:拉伸强度1.9 MPa和3.1 MPa、断裂伸长率为29.0%和66.7%、缺口冲击强度为1.1 kJ/m~2和2.9 kJ/m~2、无缺口冲击强度为1.5 kJ/m~2和3.2 kJ/m~2、球压痕硬度为4.8 MPa和5.8 MPa、维卡软化温度为3.3℃和7.0℃。  相似文献   

9.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)为基体树脂、纳米氧化锌(Nano-ZnO)为抗菌剂、叶绿素铜酸(CCA)为光敏化剂,采用熔融共混法制备了ABS/Nano-ZnO/CCA复合抗菌材料,并研究了该复合材料的抗菌性能和力学性能。结果表明:ABS/Nano-ZnO复合材料具有良好的抗菌性,添加CCA后,复合材料的抗菌性能进一步提升,其抗菌率接近100%,达到强抗菌材料的要求。Nano-ZnO和CCA的加入对基体材料的拉伸强度、弯曲强度影响不大,材料的冲击强度则有所下降。  相似文献   

10.
《塑料》2014,(2)
采用硅烷偶联剂KH550对纳米氧化锌(nano-ZnO)进行表面处理,制备nano-ZnO/PLA复合材料,研究KH550和nano-ZnO对PLA材料的力学性能、抑菌性和热稳定性能的影响。用OFW方法分析材料的热降解行为。结果表明:nano-ZnO/PLA复合材料对大肠杆菌有抑菌性能。KH550表面处理提高nano-ZnO的分散性,增强其抑菌作用,改善复合材料的界面相容性,提高力学性能。nano-ZnO降低了PLA的热分解温度和热降解活化能,KH550延缓了这种作用。  相似文献   

11.
以聚乳酸为基体,将酒糟(DDGS)、间苯二酚双(二苯基磷酸酯)(RDP)与氢氧化铝(ATH)复配作为阻燃剂,通过熔融共混制得PLA/DDGS/RDP/ATH复合材料,同时研究了不同配方的复合材料的热稳定性能、力学性能和阻燃性能。结果表明,所制得的PLA/DDGS/RDP/ATH复合材料综合性能优异,当阻燃剂的总量为30%,且DDGS/RDP/ATH的质量比为1/1/4时,阻燃聚乳酸的LOI值达到24.5%,阻燃级别达V-2级。  相似文献   

12.
将炭化酒糟(CDDGS)与聚磷酸铵(APP)复配作为阻燃剂加入聚乳酸中,通过熔融共混制得PLA/CDDGS/APP生物基复合材料。利用扫描电镜、红外光谱以及X射线衍射等分析方法,研究了CDDGS其表面形貌和成炭效果。测试了含不同配比阻燃剂时复合材料的拉伸强度、热稳定性能以及阻燃性能。结果表明,复合材料PLA/CDDGS/APP,当阻燃剂的质量分数为20%且APP与CDDGS质量比为1∶1时,复合材料的极限氧指数(LOI)为33.0%,且通过UL-94的V-0级测试。燃烧过程中阻燃剂生成了石墨化程度较高的炭层,具有优异的热稳定性与隔热性。  相似文献   

13.
将纳米氧化锌(nano-ZnO)作为协效改性剂与膨胀阻燃剂(IFR)复配,制成IFR/nano-ZnO复合阻燃剂,并将其用于三元乙丙橡胶/聚丙烯(EPDM/PP)复合材料的阻燃。研究了nano-ZnO用量对该EPDM/PP/IFR/nano-ZnO阻燃复合材料的阻燃性能和力学性能的影响。结果表明:EPDM/PP/IFR/nano-ZnO阻燃复合材料具有优良的阻燃性能,且材料的力学性能明显改善;另外,当nano-ZnO用量为2%时,该阻燃复合材料的综合性能最佳。  相似文献   

14.
张小青  张腾  郑素枚 《塑料》2023,(5):27-30+35
以聚乳酸为基体材料、木粉为增强材料、柠檬酸三丁酯为增容剂,采用熔融共混挤出工艺制备了木粉/聚乳酸(WF/PLA)复合材料,分析了柠檬酸三丁酯(TBC)的添加量对复合材料力学性能、流动性、热性能、吸水性等性能的影响。结果表明,TBC提高了复合材料的力学性能,当TBC的含量为4%时,复合材料的拉伸强度及断裂伸长率达到最大,其值分别为36.84 MPa、2.7%,与未添加TBC相比,分别提高了44.0%、53.4%。添加4%的TBC后,复合材料的吸水率降低,并且,复合材料达到饱和吸水的时间较长。除此以外,TBC还有效地改善了复合材料的界面相容性及流动性,降低了复合材料的熔融温度Tm。  相似文献   

15.
《塑料科技》2017,(5):41-44
通过熔融共混和热压法制备了高密度聚乙烯/纳米氧化锌(HDPE/nano-ZnO)复合膜,考察了偶联剂对HDPE/nano-ZnO复合膜性能的影响。采用电子万能试验机测试了复合膜的力学性能,通过平板计数法测定了复合膜的抗菌性。结果表明:偶联剂KH560改性HDPE/nano-ZnO复合膜的力学性能较高;HDPE/nano-ZnO复合膜对大肠杆菌和金黄色葡萄球菌均具有非常强的抗菌性,且抗菌性受nano-ZnO用量和偶联剂类型的影响;改性nano-ZnO用量低于0.5%时,HDPE/nano-ZnO复合膜抗菌性强弱顺序为:KH560改性KH550改性未改性;nano-ZnO用量超过0.5%时,未改性与改性nano-ZnO制得复合膜的抗菌性能较接近,其抗菌率均约为100%。Nano-ZnO用量和偶联剂类型对HDPE/nano-ZnO复合膜的力学性能和抗菌性均有影响。  相似文献   

16.
张克宏  王逍冉 《中国塑料》2020,34(11):23-28
以聚乳酸(PLA)为基体、聚氨酯(PU)为增韧相、纳米纤维素(NCF)为增强相,通过溶液法与熔融共混制得PLA/PU/NCF复合材料,研究了PU和NCF的含量对PLA力学性能与热稳定性的影响。采用傅里叶变换红外光谱仪、热失重分析仪、扫描电子显微镜和力学性能测试手段对PLA/PU/NCF复合材料的结构和性能进行了表征和分析。结果表明,柔顺的PU分子限制了PLA的结晶,提升了PLA基体的韧性;刚性的NCF通过氢键作用提升了PLA基体的强度;当NCF含量为3 %、PU含量为17 %时,PLA/PU/NCF复合材料的拉伸强度和断裂伸长率比纯PLA提升了12.10 %和694.91 %;高温热稳定性有了显著改善,复合材料的600 ℃残炭率为19.36 %。  相似文献   

17.
硅烷接枝HDPE/纳米SiO_2复合材料的制备与性能   总被引:2,自引:0,他引:2  
将经表面处理后的纳米SiO2和硅烷接枝高密度聚乙烯(HDPE)熔融共混制得硅烷接枝HDPE/纳米SiO2复合材料,并对其结晶行为、力学性能及热性能进行了研究。结果表明:与HDPE相比,硅烷接枝HDPE/纳米SiO2复合材料的结晶度降低约17%;在纳米粒子含量为6%时,热分解温度提高了15℃;在纳米粒子含量为10%时,体系的拉伸强度提高了25%。  相似文献   

18.
通过硅溶胶直接法和母料法制备低密度聚乙烯/纳米氧化硅(LDPE/SiOX)复合材料,并研究其工艺方法。通过拉伸试验和扫描电镜对复合材料进行测试和分析。结果表明,采用母料法制备的SiOX含量为2%(质量分数)的LDPE/SiOX复合材料中,SiOx的粒径为(54±10)nm。与纯LDPE相比,该纳米复合材料的拉伸强度提高了2.4N/mm2。  相似文献   

19.
凹凸棒石/聚乳酸纳米复合材料的力学性能和流变性能   总被引:1,自引:0,他引:1  
采用熔融共混法制备凹凸棒石(ATT)质量分数分别为1%、3%和5%的ATT/聚乳酸(PLA)纳米复合材料,研究了ATT/PLA纳米复合材料的力学性能和流变性能。红外光谱分析结果表明:ATT与PLA基体之间存在较强的相互作用,使得二者之间具有较好的相容性。当ATT含量低于5%时,其可均匀分散在PLA基体中,而达到5%时,则会发生部分团聚。添加ATT后,PLA基体从脆性材料变为韧性材料,ATT起到增韧作用,并显著提高了复合材料的力学性能。当ATT含量为3%时,断裂伸长率达到26.36%,比纯PLA增加了297.6%,并且复合材料的冲击强度也比纯PLA增加了19.7%。ATT/PLA纳米复合材料的复数黏度、储能模量和损耗模量随ATT含量的增加呈先增大后减小趋势。由于ATT与PLA之间有良好的结合力,ATT的加入增大了复合材料的弹性和黏性,且低频区的变化明显高于高频区的变化。  相似文献   

20.
倪志兵  余旺旺  陈泳 《塑料》2023,(6):54-59
采用熔融沉积法(FDM)3D打印工艺制作木粉(WF)与聚乳酸(PLA)质量比为3:100的WF/PLA复合材料,研究了打印工艺参数对WF/PLA复合材料力学性能的影响,确定了最佳打印工艺条件,然后,在最佳条件下,打印WF与PLA质量比为11:100的WF/PLA复合材料,并且,将该材料的性能与FDM 3D打印PLA试样进行了对比。结果表明,当打印层厚度为0.1 mm、打印温度为220℃、打印速度为50 mm/s、填充密度为100%、沉积角度为0时,WF/PLA复合材料的力学性能最佳。在该工艺条件下,WF与PLA质量比为11:100的WF/PLA复合材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和冲击强度分别为纯PLA的89.61%、97.56%、82.86%、92.40%和95.04%,与纯PLA相比,复合材料的表面润湿性能较好,吸水率显著增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号