首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas engine-driven heat pump (GEHP), which has been considered as a preferable choice in the heating and air-conditioning scheme can make full use of the waste heat from the engine and achieve a higher primary energy ratio (PER) than other forms of heating/cooling systems. In this paper, the relationship between the capacity characteristic of the GEHP and the heating and cooling loads of buildings has been analyzed. Meanwhile the reasons of the imbalance of the urban electricity and natural gas consumptions between summer and winter have been studied. The running characteristic of a water-to-water GEHP has been investigated experimentally and the PER was measured. Based on the analysis and experimental results, it could be concluded that if both the gas-fired boilers and electric air conditioners are replaced by GEHPs in some percentage, we can narrow the gaps between the requirement and provision of electricity and natural gas and balance the seasonal consumption differences of electricity and natural gas between summer and winter simultaneously. In order to improve energy efficiency, environmental quality and energy consumption structure effectively, the governmental incentive policies for promoting use of GEHPs should be formulated in China and some other developing countries.  相似文献   

2.
The prototype of combined vapour compression–absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7°C, the inlet and outlet temperatures of cooling water are 30 and 35°C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The refrigeration and heat pump systems are lately characterized by a remarkable evolution period. The principal reasons that have determined changes are the substitution of environmentally unfriendly refrigerants and the energy saving necessity. As fundamental component of a vapour compression plant, the compressor is an object of optimizations; the variation of the compressor speed, obtained regulating the supply current frequency of the compressor motor, allows to obtain energy savings. The principal aim of this paper is the determination of an experimental model that represents the variable speed reciprocating compressor working. In particular, equations that allow to get the refrigerant mass flow rate, the compressor input power and the cooling capacity in terms only of the frequency are obtained. The experimental model allows to determine the optimum frequency for each working condition and then the related energy saving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A prototype heat pump was designed and tested, as means of active thermal management for electronics packages to be used on stratospheric balloon missions. The evaporator worked as a cold plate to absorb heat dissipated by the electronics, while the condenser rejected heat primarily by radiation to the rarified environment. To predict the transient performance of the heat pump under varying environmental temperature and cooling load conditions, a dynamic model of the heat pump is created with a graphical user interface (GUI). The simulation of the evaporator and condenser are fully transient and the components are segmented, whereas the compressor and expansion device are lumped models and assumed to be at quasi-steady state. A detailed model for the mass and energy conservation in the two heat exchangers is presented. The spatial and temporal variation of temperature and mass flow rate in the heat exchangers are predicted. Several types of transient conditions such as step changes of the space temperature and cooling load, system start-up, shutdown, and cycling, are studied. The space temperature, cooling load, compressor power, mass flow rates of the compressor and expansion device, pressures and refrigerant charges of the condenser and evaporator, and temperature distribution in the heat exchangers are dynamically displayed on the GUI. The simulation results are compared with experimental data for step changes in the cooling load and show good agreement in terms of trends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
E. Elgendy  J. Schmidt  A. Khalil  M. Fatouh 《Energy》2011,36(5):2883-2889
The present work aimed at evaluating the experimental performance of a gas engine heat pump for hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of ambient air temperature (10.9-25.3 °C), condenser water inlet temperature (33-49 °C) and at two engine speeds (1300 and 1750 rpm). Performance characteristics of the gas engine heat pump were characterized by water outlet temperatures, total heating capacity and primary energy ratio. The reported results revealed that hot water outlet temperature between 35 and 70 °C can be obtained over the considered range of the operating parameters. Also, total heating capacity and gas engine heat recovery decrease by 9.3 and 27.7%, respectively, while gas engine energy consumption increases by 17.5% when the condenser water inlet temperature changes from 33 to 49 °C. Total heating capacity, gas engine heat recovery and gas engine energy consumption at ambient air temperature of 25.3 °C are higher than those at ambient air temperature of 10.9 °C by about 10.9, 6.3 and 1.5% respectively. Moreover, system primary energy ratio decreases by 15.3% when the engine speed changes from 1300 to 1750 rpm.  相似文献   

6.
燃气机热泵变负荷特性的试验研究   总被引:4,自引:0,他引:4  
燃气机热泵是一项高效节能技术,在试验条件下其一次能源利用率PER为1.13~1.79。为了解交负荷时燃气机热泵的性能,通过试验得到了燃气机热泵的发动机负荷特性、发动机余热回收和燃气机热泵的总体特性曲线。结果表明:随着发动机转速的增加,燃气机热泵的COP和PER是下降的,但下降的幅度较为平缓,且保持较高的数值。通过对IPL Vcop值的分析,发现燃气机热泵的IPL Vcop比热泵系统的大,这说明燃气机热泵的部分负荷性能好,可以很好地实现交负荷运行。  相似文献   

7.
An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat.  相似文献   

8.
E. Elgendy  J. Schmidt  A. Khalil  M. Fatouh 《Energy》2010,35(12):4941-4948
A gas engine heat pump (GEHP) represents one of the most practicable systems which improve the overall energy utilization efficiency and reduce the operating cost for heating and cooling applications. The present work aimed at evaluating the performance of a GEHP for air-conditioning and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of engine speed (1200 rpm–1750 rpm), ambient air temperature (24.1 °C–34.8 °C), evaporator water flow rate (1.99 m3/h–3.6 m3/h) and evaporator water inlet temperature (12.2 °C–23 °C). Performance characteristics of the GEHP were characterized by water outlet temperatures, cooling capacity, heating capacity and primary energy ratio (PER). The results showed that the effect of evaporator water inlet temperature on the system performance is more significant than the effects of ambient air temperature and evaporator water flow rate. PER of the considered system at evaporator water inlet temperature of 23 °C is higher than that one at evaporator water inlet temperature of 12.2 °C by about 22%. PER of the system decreases by 16% when engine speed changes from 1200 rpm to 1750 rpm.  相似文献   

9.
用CuO纳米流体作为柴油机的冷却介质,运用计算流体力学(CFD)方法对CuO粒子质量分数为1%,3%和5%的CuO纳米流体在柴油机冷却水套内的流动和换热过程进行三维数值模拟,并采用湍流随机跟踪方法,对固液两相流离散项纳米粒子的运动进行轨迹追踪,得到了不同CuO质量分数的纳米流体在柴油机水套内的CuO粒子分布,速度场分布,换热总量以及水套进出、口之间的压降变化。计算结果表明,CuO纳米流体作为介质可以显著提高柴油机的散热性能,随着纳米粒子的增加,柴油机散热能力增强,水泵功率损失小范围增加。  相似文献   

10.
燃气内燃机和吸附制冷机组成的冷热电三联供系统   总被引:2,自引:0,他引:2  
对一种微型楼宇冷热电三联供系统进行了技术经济分析.该系统由小型燃气发动机和热水驱动的吸附制冷机组成.为了提高系统的热电输出比,系统设置了一电热泵.分析了该系统在不同负荷率(PLR)下的一次能源利用效率(PER),确定了高效运行的参数范围;比较分析了该系统在不同热电输出比、热水输出比条件下的节能性;并通过一实例对系统的经济性进行了分析.研究表明,该系统具有宽广的热电输出比、较高的总能利用率和经济可行性,适合小型商业场所和家庭使用,图5表2参9  相似文献   

11.
Energy flow from the primary energy to the final energy use varies depending on which device is used for the heating and cooling energy service. This paper presents economic analyses of medium capacity space heating and cooling systems from three perspectives – primary energy, final consumer, and social cost perspective. From the analysis results of primary energy and final consumer perspective, electric heat pump (EHP) system is found to be superior to the gas engine driven heat pump (GHP) system for the energy consumption and cost-effectiveness due to its higher system efficiency. However, the result of social cost perspective shows the GHP system is superior to the EHP system considering incurred incremental electricity generation capacity construction cost and avoided gas storage tank construction cost due to a new installation of each system. And this paper suggests three analysis methodologies – the primary energy, final consumer, and social cost perspective – can be used for developing various measures and policies for integrated demand side management.  相似文献   

12.
《Energy Conversion and Management》2005,46(11-12):1714-1730
In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine’s performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper.  相似文献   

13.
太阳能辅助电动汽车热泵空调系统的研究   总被引:3,自引:0,他引:3  
介绍研制的电动汽车热泵空调系统及其配用的双工作腔滑片压缩机的性能,依据测试样机的试验结果分转速对该空调系统制冷量,输入功率及COP等性能的影响,若轿车顶盖全部布满太阳电池,所产生的电能约为225W,可以使空调系统的制冷量增加8%左右,同时还能降低汽车空调冷负荷的峰值。  相似文献   

14.
燃气机热泵可以通过改变燃气机转速调节系统容量,系统容量的调节和压缩机转速的变化,需要电子膨胀阀调节制冷剂流量与之相匹配。采用实验方法建立蒸发器过热度模型,通过理论分析和实验测试,研究了燃气机热泵系统变转速调节和当过热度设定值改变时蒸发器过热度的控制策略。提出采用增益调度控制策略实现蒸发器过热度的控制,实验结果表明:改变燃气机转速时,过热度控制比较精确,波动范围在±0.5℃以内;过热度设定值改变时,最大超调量小于2℃,过热度响应速度快,具有很好的动态响应特性,达到稳态的时间不超过200 s。  相似文献   

15.
The high-frequency pulse tube cryocooler (HPTC) has been attracting increasing and widespread attention in the field of cryogenic technology because of its compact structure, low vibration, and reliable operation. The gas-coupled HPTC, driven by a single compressor, is currently the simplest and most compact structure. For HPTCs operating below 20 K, in order to obtain the mW cooling capacity, hundreds or even thousands of watts of electrical power are consumed, where radiation heat leakage accounts for a large proportion of their cooling capacity. In this paper, based on SAGE10, a HPTC heat radiation calculation model was first established to study the effects of radiation heat leakage on apparent performance parameters (such as temperature and cooling capacity), and internal parameters (such as enthalpy flow and gas distribution) of the gas-coupled HPTC. An active thermal insulation method of cascade utilization of the cold energy of the system was proposed for the gas-coupled HPTC. Numerical simulations indicate that the reduction of external radiation heat leakage cannot only directly increase the net cooling power, but also decrease the internal gross losses and increase the mass and acoustic power in the lower-temperature section, which further enhances the refrigeration performance. The numerical calculation results were verified by experiments, and the test results showed that the no-load temperature of the developed cryocooler prototype decreased from 15.1 K to 6.4 K, and the relative Carnot efficiency at 15.5 K increased from 0.029% to 0.996% when substituting the proposed active method for the traditional passive method with multi-layer thermal insulation materials.  相似文献   

16.
A mathematical model for an air conditioning system used in five-seater cars is developed with R1234ze(E) and R134a refrigerants, consisting of real system geometry like an evaporator, compressor, condenser, and thermostatic expansion valve. The mathematical model includes refrigerant properties, heat transfer, and pressure loss correlations for two-phase and single-phase regions. The performance parameters of a system like evaporator cooling duty, condenser heat loss, compressor power, refrigerant flow rate, and compressor volumetric efficiency obtained from a mathematical model are validated with the results of an experimental facility developed with R134a. The uncertainty analysis performed for the testing facility showed below 11% deviation. The simulation and experimental results showed an overall 10%–15% difference. It is found that the experimental cooling capacity with R134a and numerical cooling capacity with R134a show a 4%–12% variation, experimental cooling capacity with R134a and numerical cooling capacity with R1234ze(E) show a 7%–20% variation, and numerical cooling capacity with R134a and numerical cooling capacity with R1234ze(E) show a 5%–15% variation for the given range of compressor speed (500–1500 rpm), and condensing temperature (26–45°C). The study concluded that R1234ze(E) could potentially replace R134a because it has similar thermophysical properties and an average performance difference of up to 10% with R134a. Due to the limitations of the electric motor used to drive the compressor, tests in the current study were conducted at modest compressor speeds (500–1500 rpm). Future research will focus on experiments with high compressor speed (in the range of 1500–4000 rpm) and R1234yf and R1234ze(E) refrigerants for performance evaluation of automobile air conditioning systems.  相似文献   

17.
西门子公司V94.3燃气轮机冷却空气信息推测   总被引:3,自引:0,他引:3  
作为建立燃用低热值合成气的燃气轮机变工况模型的一个关键步骤,对西门子V94.3燃气轮机冷却空气参数及其分配进行了研究,试图从公开发表的燃气轮机功率、压比、排气温度、三亿透平初温等数据中推测出冷却空气量的分配规律。计算和推测所得到的冷却空气参数和分配规律与燃机净功率以及ISO温度基本吻合。  相似文献   

18.
Most natural gas (NG) producers in the Persian Gulf face increasing challenges in meeting their domestic gas demands and therefore seek to reduce their NG consumption. Concurrently, the on‐site power generation and cooling capacities of local NG processing facilities are constrained by extreme climatic conditions. A combined cooling and power scheme based on gas turbine (GT) waste heat‐powered absorption refrigeration is techno‐economically assessed to reduce the NG consumption of a major gas processing plant in the Persian Gulf. The scheme utilizes double‐effect water‐lithium bromide absorption refrigeration activated by steam generated from GT exhaust gas waste heat to provide both GT compressor inlet air and process gas cooling. Based on a thermodynamic analysis, recovery of 150 MW of GT waste heat is found to enhance the plant cooling capacity by 195 MW, thereby permitting elimination of a 32.6 MW GT and existing cooling equipment. On‐site power generation is enhanced by 196 GWh annually through GT compressor inlet air cooling, with energy efficiency (i.e., 64%) improved by 35% using cogeneration relative to the existing power generation plant. The overall net annual operating expenditure savings contributed by the combined cooling and power system are of $US13 million to 34 million based on present and projected local utility prices, with an economic payback period estimated at 2 to 5 years. These savings translate to approximately 94 to 241 MMSCM of NG per year, highlighting the potential of absorption refrigeration to both enhance the power generation and cooling capacity of hydrocarbon processing plants exposed to harsh environmental conditions and to realize substantial primary energy savings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The paper describes a simulation model developed to predict the performance of drying systems assisted by vapour-compression heat pumps. The heat is used to preheat the air stream before it enters the drying chamber. Energy consumption is thus reduced, as the heat pump is capable of delivering more energy as heat than it in fact consumes as input work. Ambient air provides the heat source. A computer program, based on simplified modelling of components (compressor, heat exchangers and drying chamber) has been developed. Results have been produced for a typical application, revealing that a considerable reduction in energy consumption can be obtained with the use of a heat pump. The effect of air flow rate on system performance is also studied.  相似文献   

20.
姚春峰 《中外能源》2012,17(4):97-102
金陵石化1.5Mt/a加氢裂化装置投用初期,能耗超过40kg标油/t原料,通过几次大的技术改造,能耗明显下降,2011年1~11月装置综合能耗为26.89kg标油/t原料.能耗划分显示,燃料气消耗占装置能耗的最大部分,所占比例达42.47%,其次为电能和蒸汽消耗,分别占总能耗的41.05%和12.76%.这3项能耗占到装置总能耗的96%以上.装置的节能降耗工作主要采取以下措施:优化换热网络,回收低温余热;新氢机增加无级气量调节系统,降低压缩机的无用功;脱硫溶剂采取溶剂在线清洗,提高溶剂质量,减少溶剂损耗,同时减缓溶剂系统腐蚀和塔盘结垢;分馏加热炉空气预热器改型以及火嘴改造;保证装置高负荷运行,提高循环氢压缩机、新氢压缩机、原料泵等设备的用能效率;利用变频技术,投用液力透平,实现节电目标;通过热料直供,减少作为溶剂再生塔底热源的1.0MPa蒸汽消耗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号