首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 218 毫秒
1.
采用液相还原法制备纳米零价铁(nZVI),以其吸附废水中的Sb(Ⅲ),得到nZVI/Sb颗粒; 将其在500 ℃下氧气煅烧8 h,制得Fe3O4/Sb2O4材料; 再以葡萄糖为碳源、600 ℃氮气热处理,制备了Fe3O4/Sb2O4@C复合材料,并对其性能进行了研究。结果表明,nZVI吸附含Sb(Ⅲ)废水的适宜条件为:中性溶液Sb(Ⅲ)初始浓度100 mg/L,nZVI投加量1.2 g/L,室温下吸附50 min,该条件下废水中Sb(Ⅲ)去除率为73%; 引入Sb2O4后,铁基负极的首次放电比容量高达1065.6 mAh/g; 包覆碳后,Fe3O4/Sb2O4@C复合材料电化学性能明显改善,100 mA/g电流密度下,循环150圈后放电比容量仍可保持在483.7 mAh/g,电流密度2000 mA/g时,放电比容量仍有118.2 mAh/g。  相似文献   

2.
李伟伟 《矿冶工程》2018,38(2):128-130
在水溶液体系中, 制备了1%Al2O3修饰的镍基正极材料LiNi0.9Co0.1O2, 并研究了热处理温度对正极材料性能的影响。结果表明, 1%Al2O3修饰后没有改变正极材料的结构和形貌, 650 ℃热处理后正极材料具有最佳的电化学性能, 首次放电容量为178.4 mAh/g, 库伦效率为82.4%, 0.5C倍率50次循环后的容量保持率为88.1%。  相似文献   

3.
以溶胶-凝胶法制备了不同质量百分比的NiFe2O4@LiMn2O4复合正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜和电化学性能测试等手段, 对NiFe2O4@LiMn2O4材料的结构、形貌和电化学性能进行表征。结果表明, NiFe2O4的包覆并没有改变锰酸锂材料的晶体结构;锰酸锂颗粒表面没有观察到NiFe2O4材料存在。当NiFe2O4包覆量为1%时, 复合材料具有较好的电化学性能, 其首次充放电效率、循环性能和倍率性能都得到了一定程度的提高, 此时NiFe2O4呈薄膜型包覆在锰酸锂颗粒的表面, 厚度约为14 nm, 首次放电比容量(0.1C)为121.2 mAh/g, 10C倍率放电条件下放电比容量为84.8 mAh/g, 1C循环400周后容量保持率为90.64%。  相似文献   

4.
锂锰氧化合物的分子模型及理论容量计算   总被引:4,自引:2,他引:2  
以LiNO3 和电解MnO2 为原料, 以含羟基有机溶剂和水的混合溶液为分散剂, 采用流变相法合成尖晶石型LixMn2O4, 提出了锂锰氧的分子模型并计算了其理论容量。结果表明, 在700~800 ℃温度范围, 所得化合物为化学计量尖晶石型材料, 其理论容量为148 mAh/g;当合成温度达900 ℃以上时, 产物为缺氧型尖晶石, 其理论容量为120 mAh/g, 材料中电化学活性物质Mn3+的含量降低是材料理论容量降低的主要原因。实验结果表明, 当锂锰摩尔比为0.488 时, 锰的平均氧化价态为3.52, 在煅烧温度为760 ℃时, 所合成锂锰氧材料的充电容量可达128.1 mAh/g, 放电效率为92.3%。  相似文献   

5.
马秋臣  刘军 《矿冶工程》2021,41(1):110-113
通过共沉淀法制备了Mn3O4,再通过多巴胺包覆烧结得到碳包覆的MnO@C, 并将其用作锌离子电池正极材料。结果表明, 组装电池在0.2 A/g下比容量达到282.9 mAh/g。在1 A/g下循环500次后, 比容量为80.2 mAh/g。碳包裹MnO可为Mn基锌离子电池开发提供新思路。  相似文献   

6.
为改善富锂材料的电化学性能,使用Li3VO4对富锂锰基材料Li1.2Ni0.13Co0.13Mn0.54O2进行湿法包覆。对样品进行表征和电化学性能测试,结果表明,包覆工艺不会破坏富锂层状材料的结构;包覆物明显改善样品的电化学性能,其中3%包覆量的样品综合性能最好,首次放电比容量为243.2 mAh/g,库伦效率70.9%;在1C下循环50次后,容量保持率为87.2%。  相似文献   

7.
以电解二氧化锰为锰源,采用球磨法和高温固相法制备了富锂锰基正极材料Li1.2Mn0.54Co0.13Ni0.13O2。探索了烧结温度对富锂锰基材料结构和性能的影响, 确定了最佳温度条件。采用X射线衍射和扫描电子显微镜对所合成的正极材料进行了结构和形貌表征, 同时通过充放电测试对材料电化学性能进行了测试。结果表明, 在850 ℃下, 以电解二氧化锰为锰源制备的富锂锰基正极材料具有较好的电化学性能, 在0.05C、0.1C、0.2C、0.5C和1C下的首次放电比容量为254.8、238.1、217.6、179.9和161.8 mAh/g。在0.2C下循环20次,容量保持率为93.66%, 在0.5C下循环50次容量保持率为90.03%, 在1C下循环100次容量保持率为88.31%。  相似文献   

8.
共沉淀法合成镍锰酸锂正极材料前驱体   总被引:2,自引:2,他引:0  
通过共沉淀法合成了类球形镍锰酸锂正极材料前驱体, 研究了反应温度、溶液pH值、溶剂组成和表面活性剂十六烷基三甲基溴化铵(CTAB)添加量对前驱体镍锰碳酸盐形貌、粒径及物相组成的影响。结果表明, 适宜的合成条件为:pH=9.0, 反应温度80 ℃, 乙醇与水体积比1∶3, 表面活性剂CTAB添加量为1.5倍临界胶束浓度(CMC)。在该条件下制备的前驱体镍锰碳酸盐具有层片状堆垛的类球形结构; 煅烧后得到的镍锰酸锂材料为无序型的尖晶石结构, 属于Fd-3m空间群, 结晶度高, 粒径约150 nm。对镍锰酸锂进行电化学性能测试, 结果显示, LiNi0.5Mn1.5O4在0.5C下的最大放电比容量为124.8 mAh/g, 20次循环后容量保持率为62.3%, 在大倍率下放电后再次回到0.5C, 放电比容量为73.8 mAh/g。  相似文献   

9.
高温固相法再生废旧磷酸铁锂电池正极材料   总被引:1,自引:1,他引:0  
通过强碱溶液浸泡过程分离废旧磷酸铁锂(LiFePO4)电池中的正极材料与铝箔集流体,经过热处理、砂磨混合和高温焙烧实现了LiFePO4的再生利用。采用XRD、SEM对再生样品的物相和形貌进行表征,结果表明,再生LiFePO4材料颗粒分布在纳米尺度下,粒径分布均匀,无团聚现象。电化学性能测试结果表明,在0.1C和5C电流密度下,再生LiFePO4放电比容量分别为165.2 和101.5 mAh/g; 在1C倍率下循环100次后,材料容量为150.1 mAh/g,保持率为97.85%,表现出较好的倍率和循环性能。该再生工艺简单、合成的材料电化学性能良好,为加快废旧磷酸铁锂电池回收和再生提供了新的借鉴。  相似文献   

10.
采用高温固相法合成了不同铝含量的523镍钴锰酸锂,通过振实密度、粒度分布、pH值、电化学性能测试等手段,探究不同铝掺杂量、烧结时间、烧结温度对高电压镍钴锰酸锂性能的影响。研究结果表明,当铝掺杂量为0.7%、烧结时间为10 h、烧结温度为940 ℃时,高电压镍钴锰酸锂的性能最佳,此时,样品粒度D50为7.83 μm,振实密度达到2.81 g/cm3,在3.0~4.4 V电压范围和1.0C倍率下,初始容量为174.17 mAh/g,50次循环容量保持率为97.18%。试验结果对改善高电压镍钴锰酸锂性能有一定的参考作用。  相似文献   

11.
采用固相球磨法制备了Li2FeP2O7/C正极材料,研究了烧结温度、碳包覆含量以及碳源对其结构、形貌以及电化学性能的影响。结果表明: 高温固相烧结合成样品的适宜温度为680 ℃,以柠檬酸为碳源、碳包覆量为5%时,合成的Li2FeP2O7/C晶型完整,晶粒较小且均匀,0.1C倍率下的放电比容量可达102.6 mAh/g,0.5C倍率下的初次放电比容量可达83.4 mAh/g,循环30次后放电比容量为80.7 mAh/g,展现了较好的循环性能以及倍率性能。  相似文献   

12.
何敏  习小明  周友元 《矿冶工程》2014,34(4):119-121
采用二氧化锰还原法制备了锰酸锂前驱体, 将前驱体在不同温度下进行热处理, 制得尖晶石型锰酸锂。利用AAS、滴定法、XRD、SEM表征样品的元素含量、晶体结构、形貌和粒径, 并研究了不同热处理温度对锰酸锂电化学性能的影响。结果表明, 通过二氧化锰还原法合成出了具有一定尖晶石结构的锰酸锂前驱体。当热处理温度为800 ℃时, 锰酸锂的导电性最佳, 0.2C放电容量为132.7 mAh/g, 0.5C放电容量为123.9 mAh/g, 循环10次后, 容量衰减5.97%。  相似文献   

13.
采用两步法制备了具有核壳结构的钛铬酸锂/钛酸锂复合材料,比较了包覆钛铬酸锂前后和不同干燥方式下负极材料的形貌和电化学性能。结果表明,喷雾干燥法制备的复合材料具有较好的球形结构和表面特性,综合电化学性能较好,可逆比容量可达到160.7 mAh/g, 200次1C循环后容量保持率95.4%,材料在15C充放电倍率下其比容量为1C的81%,倍率性能优异。利用交流阻抗测试,对材料的失活机理进行了初步探索,表明电荷和锂离子传递阻力的增加是材料容量衰减的主要原因  相似文献   

14.
以异丙醇作为溶剂,通过溶剂热法在不同反应时间下制备了前驱体碳酸钴,再采用高温煅烧法制备了超细纳米/微米多孔四氧化三钴粉末,研究了反应时间对前驱体碳酸钴及四氧化三钴的组成及形貌的影响,并测定了四氧化三钴负极材料电化学性能.结果表明,纳米/微米球(2~4μm)由细小且均匀的四氧化三钴纳米颗粒和孔洞组成;以四氧化三钴作为锂离...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号