首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   

2.
This study investigated the fatigue bond behaviour of corroded steel reinforced concrete beams. Nine beams (152 × 254 × 2000 mm [6 × 10 × 78.74 in.]) were constructed and tested. Bond failure occurred in all the beams. The variables in this test series were: the type of load applied (monotonic or repeated loading), the repeated load range, whether the reinforcement inside the beam was corroded or not, and whether a carbon fibre reinforced polymer (CFRP) repair method was used or not. The fatigue life of the beams varied linearly with the range of applied load with a very shallow slope. Corroding the beams to a low corrosion level decreased the fatigue bond strength by about 30%. Corrosion caused the concrete in between the lugs of the reinforcing bars to be partially crushed due to the formation of the rust products from the corrosion process. This reduced the strength of the concrete keys and increased the rate of slip in the bar under repeated loading.  相似文献   

3.
The fatigue strength of an annealed Ti-15Zr-4Nb-4Ta alloy at 1 × 108 cycles was approximately 730 MPa. The fatigue strength of its alloy was much improved following an ageing treatment after a solution treatment. The tension-to-tension fatigue strengths of annealed Ti-6Al-4V, V-free Ti-6Al-7Nb, Ti-6Al-2Nb-1Ta, and Ti-15Mo-5Zr-3Al alloys at 1 × 108 cycles were approximately 685, 600, 700, and 350 MPa, respectively. The ratios of fatigue strength at 1 × 108 cycles to ultimate tensile strength for the α- and (α + β)-type Ti materials were higher than 65%.  相似文献   

4.
《Composites Part A》2007,38(7):1633-1645
This article studies the fatigue properties of a carbon-fibre cross-ply non-crimp fabric reinforced epoxy composite. Tensile–tensile fatigue cycling was carried out at load levels corresponding to the onset of damage in a static tensile test, in machine, cross and bias direction. Specimens in machine and cross direction did not fail up to 106 cycles; specimens in bias direction had an average fatigue life Nmax of 3 × 105 cycles. Stiffness degradation in bias direction samples was found to be more severe than in machine or cross direction. Damage development in the samples was studied by means of X-ray photography and appears to show remarkable resemblance to the development under a static tensile test and can be qualitatively compared to the behaviour of non-stitched UD laminates. Post-fatigue tensile tests were done at various stages of the fatigue life. Small differences in damage onset strain level can be found. Failure strain of bias direction tested samples shows significant decrease upon cycling.  相似文献   

5.
Molded pulp product is widely used in distribution chains as a cushioning packaging of industrial products due to its favorable cushioning capability. How to evaluate the cushioning capability of molded pulp product is the key issue many scholars are interesting in. The load carrying capacity and energy absorbing of the molded pulp products used in the cushion packaging of mobile phones both in the static compression and dynamic impact were investigated in this paper by applying the experiment and finite element analysis. The static compression was conducted with the compression speed of 12 mm/min corresponding to the nominal strain rate 3.8 × 10−3 s−1, and the dynamic impact tests were conducted with three drop heights of 25, 50 and 80 cm corresponding respectively to the nominal strain rates 4.2 × 101, 6.0 × 101 and 7.5 × 101 s−1. The high speed camera was used to record the dynamic impact process and deformation. The finite element model of molded pulp product was built, and the stress and displacement nephograms, the dynamic impact deformation process, the load–displacement curve and the energy absorption curve of the molded pulp product were archived. The comparison between the finite element analysis and the experiment was made. The load–displacement curve of the finite element analysis is in agreement with that of the experiment in the static compression, and the energy absorption curves of the finite element analysis with different nominal strain rates are in agreement with that of the experiment in the area of the point of optimum energy absorption. However, a growing gap between the finite element analysis and the experiment appears with the nominal strain rate increasing, which may be induced by the use of the static stress–strain curve of the material in the finite element analysis of dynamic impact. The molded pulp product experiences the process from structural deformation, local stress concentration, first local buckling, redistribution of stress, global buckling, to structural dilapidation and densification. Two obvious buckling processes occur because of its complicated structure and two layers in structure. However, some additional local buckling also occur before the global buckling of structure in the case of dynamic impact with higher nominal strain rate. The deformation processes of molded pulp product from the finite element analysis and the experiment recorded by high-speed camera are coincident. With the nominal strain rate increasing, the yield stress of molded pulp product increases obviously, and the shoulder point of the energy absorption curve moves upward to the right. The yield stress under the dynamic impact at a drop height of 80 cm increases 59.4% compared with that under the static compression, and the corresponding optimum energy absorption increases 85.4%. The effects of strain rate on the load carrying capacity and the energy absorption of molded pulp product are remarkable. The results can be applied to the design of molded pulp products.  相似文献   

6.
Fatigue specimens of A508-3 steel were irradiated in the swimming-pool test reactor in China Institute of Atomic Energy, the fluence was 3 × 1019 n/cm2 at 300 °C, then low-cycle fatigue tests were carried out at ambient temperature, with the fatigue strain range is 0.32–1.8%. The results indicate that, irradiated A508-3 specimens exhibit cyclic softening and instability behavior during the test, and the cyclic softening rate increased with strain range increased; fatigue life decreased from 1.7 × 105 to about 5 × 102, as the strain range increased from 0.32% to 1.8%, the fatigue life of A508-3 steel increased after the neutron irradiation; fatigue fracture initiated at the surface of specimen, and more individual cracks formed on the specimens of higher strain range compared with the specimens of lower strain range.  相似文献   

7.
The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; ‘stitched 6 × 6’) and densely stitched composite (SD = 0.111/mm2; ‘stitched 3 × 3’) are tested and compared with composite without stitch thread (SD = 0.0; ‘unstitched’). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination.  相似文献   

8.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

9.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

10.
The low-cycle fatigue (LCF) properties and post-fatigue microstructure of a Fe–15Mn–10Cr–8Ni–4Si austenitic alloy were investigated under an axial strain control mode with total strain amplitudes, Δεt/2, ranging from 2.5 × 10−3 to 2 × 10−2. The fatigue resistance of the alloy was described by Coffin–Manson’s and Basquin’s relationships, and the corresponding fatigue parameters were evaluated. In addition, the Masing behavior, which is associated with a constant deformation mode during fatigue, was revealed at the examined strain amplitudes. Microstructural observations of the fatigue fractured samples showed that the strain induced ε-martensitic transformation accompanied by a planar slip of the Shockley partial dislocations in the austenite is the main deformation mode controlling the fatigue behavior of the studied alloy at Δεt/2 < 2 × 10−2. However, at Δεt/2 = 2 × 10−2, the formation of a cell structure was found in the austenite in addition to ε-martensitic transformation. The LCF resistance of the alloy was compared with conventional Cr–Ni austenitic stainless steels, ferrous base TRIP and TWIP steels and low yield point damping steels. It was found that at the studied strain amplitudes the alloy possessed a higher LCF resistance compared to conventional Fe-base alloys and steels. Remarkably, the fatigue ductility coefficient, εf′, of the studied alloy is 1.3–6 times higher than that of the stainless steels because of a cyclic deformation-induced ε-martensitic transformation. The results showed that the ε-martensitic transformation that occurred in the studied alloy during LCF is the main reason for the improved LCF resistance.  相似文献   

11.
In the present paper, Kevlar® 49 single yarns with different gage lengths were tested under both quasi-static loading at a strain rate of 4.2 × 10?4 s?1 using a MTS load frame and dynamic tensile loading over a strain rate range of 20–100 s?1 using a servo-hydraulic high-rate testing system. The experimental results showed that the material mechanical properties are dependent on gage length and strain rate. Young’s modulus, tensile strength, maximum strain and toughness increase with increasing strain rate under dynamic loading; however the tensile strength decreases with increasing gage length under quasi-static loading. Weibull statistics were used to quantify the degree of variability in yarn strength at different gage lengths and strain rates. This data was then used to build an analytical model simulating the stress–strain response of single yarn under dynamic loading. The model predictions agree reasonably well with the experimental data.  相似文献   

12.
Nanostructured zinc oxide (nsZnO) films have been fabricated onto conducting indium–tin–oxide (ITO) coated glass plate, by cathodic electro-deposition to immobilize probe DNA specific to M. tuberculosis via physisorption based on strong electrostatic interactions between positively charged ZnO (isoelectric point = 9.5) and negatively charged DNA to detect its complementary target. Electrochemical studies reveal that the presence of nano-structured ZnO results in increased electro-active surface area for loading of DNA molecules. The DNA–nsZnO/ITO bioelectrode exhibits interesting characteristics such as detection range of 1 × 10?6 ? 1 × 10?12 M, detection limit of 1 × 10?12 M (complementary target) and 1 × 10?13 M (genomic DNA), reusability of about 10 times, response time of 60s and stability of up to 4 months when kept at 4°C.  相似文献   

13.
The loading of multi-walled carbon nanotubes (MWNTs) and glucose oxidase (GOx) in the alternate layers of a glucose biosensor was first optimized based on a layer-by-layer construction on the surface of a graphite disk electrode. With the increasing of MWNTs/GOx layers, the response current to glucose was changed regularly and the response current reached a maximum value when the number of MWNTs/GOx layers was 6. Owing to a good electrical conductivity, strong adsorption and excellent bioconsistency of MWNTs, the (MWNTs/GOx)6 films-coated glucose biosensor had an excellent electrochemical properties. The response current of the (MWNTs/GOx)6 films-coated biosensor to 3 × 10 2 M glucose was 1.63 μA while the response time was only 6.7 s. The linear range and the lowest detectable concentration of this biosensor was 5 × 10 4∼1.5 × 10 2 M and 0.9 × 10 4 M, respectively.  相似文献   

14.
This paper investigates the anisotropic properties of short glass fibre reinforced polyamide 6.6 (PA66-GF35) under tension–tension and tension–compression cyclic loading. Tensile fatigue tests were carried out on dog-bone specimens, machined out from injection-moulded plates 80 × 80 mm, of three different thicknesses t (1 and 3 mm) at three different nominal fibre orientation angles θ (0°, 30° and 90°). The tests were carried out at RT as well as at 130 °C.The Tsai–Hill failure criterion, modified to account for cyclic loading, is applied to the fatigue data for estimating the fatigue strength parameters of the material under investigation. Results are compared to the strength parameters obtained under quasi-static loading in a previous part of this work [De Monte M, Moosbrugger E, Quaresimin M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – quasi-static loading. Composites: Part A, 2010;41(10):1368–79]. The experimental results highlight how specimen thickness remarkably affects mechanical properties: the thinner the specimen the higher will be the degree of anisotropy. Also temperature strongly reduces the fatigue strength under cyclic loading. The Tsai–Hill criterion allows for an adequate fitting of experimental data at the investigated temperatures and load ratios.  相似文献   

15.
Nanometer-scale particles (Mn–C clusters) were analyzed quantitatively using small-angle neutron scattering in 18Mn–0.6C (wt.%) austenite high-manganese steel. The size, number, and volume fraction of the particles were determined as a function of strain (0, 5, 15, 30, 45, 50%) at different temperatures (25 and 100 °C). The diameter of the cluster ranges from 2 to 14 nm in the matrix. The total volume fraction of the cluster significantly increases from 2.7 × 10 6 to 8.7 × 10 6 as the strain increases. Such clustering phenomenon is correlated to the serration behavior under loading in high-manganese steels.  相似文献   

16.
Fatigue tests were performed on welded joints made of high-strength, low-alloy steel (S690). Different welding processes were tested, resulting in welds with different defects essentially consisting in lack of penetration. Fatigue tests were run with both constant and variable amplitude loading. The experimental results were compared to predictions obtained by applying local approaches (local stress and local strain) and the concepts of fracture mechanics. The local stress approach allowed the fatigue strength of joints in constant amplitude loading (for fatigue above 2 × 106) to be predicted, but the assumption of a constant value of the slope k = 3 for all S–N curves led to non-conservative predictions of shorter lives. The local strain approach allowed the fatigue strength of the joints under constant amplitude to be predicted. Although, these predictions matched the experimental data well for both small and large defects in the entire cycle number range, they failed to predict the behaviour of joints under variable amplitude loading. Conversely, the fracture mechanics approach proved to be more efficient in predicting the fatigue behaviour of welded joint under variable amplitude loading.  相似文献   

17.
Fatigue properties of 2024-T351 aluminium alloy are investigated in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Endurance tests are performed with ultrasonic equipment at 20 kHz cycling frequency at load ratios of R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Additional servo-hydraulic tests between 8 and 10 Hz at R = 0.1 show no frequency influence on fatigue lifetimes. Linear lines in double logarithmic SN plots are used to approximate data. Slope exponents of approximation lines increase with increasing numbers of cycles for all load ratios. Failures above 5 × 109 cycles (R = −1 and R = 0.1) or 1010 cycles (R = 0.5) occur, and no fatigue limit is found. Fatigue cracks leading to failures above 109 cycles are initiated at the surface or slightly below at broken constituent particles or at agglomerations of fractured particles, which are probably Al7Cu2(Fe, Mn). Specimens stressed with more than 1010 cycles at R = −1 without failure show several cracks starting at constituent particles. Maximum crack lengths are 30 μm, which is considerably below grain size.  相似文献   

18.
Hydroxy apatite (HAp) ceramic was synthesized using traditional sintering. Dilatometric and lattice thermal expansion properties of a HAp ceramic were evaluated at temperatures of ? 100–50 °C. In that temperature range, the dilatometric thermal expansion coefficient and the lattice thermal expansion coefficient of the HAp ceramic were, respectively, 10.6 × 10? 6/°C and 9.9 × 10? 6/°C. Furthermore, thermal expansion properties of a human tooth were measured. The thermal expansion coefficient of the horizontal direction perpendicular to the growing direction of a tooth was 15.5 × 10? 6/°C; that of the vertical direction along with the direction of tooth growth was 18.9 × 10? 6/°C at the temperature range described above.  相似文献   

19.
Nylon-6/flake graphite (FG) composite, Nylon-6/graphene intercalation compounds (GIC) composite and Nylon-6/exfoliated graphite (EG) composite were prepared by FG, GIC, EG and caprolactam via in situ polymerization, and the volume resistivities of Nylon-6/flake graphite derivatives composites were also investigated. Meanwhile, the structure of Nylon-6/EG composite was characterized and the thermal stability of Nylon-6/EG composite was investigated as well. When the mass percents of FG, GIC and EG were 1%, 2–4% and 1%, the volume resistivities of flake graphite derivatives composites would reach 7.5 × 106 Ω cm, 3.6 × 108–1.4 × 106 Ω cm and 2.3 × 106 Ω cm. When the mass percent of EG increases from 0% to 9%, the thermal stability temperature of Nylon-6/EG composite would enhance from 70 to 196 °C. This shows that Nylon-6/flake graphite derivatives composites can have the antistatic property and thermal stability synchronously.  相似文献   

20.
It was shown that introducing an ultrafine-grained (UFG) microstructure in pure metals as well as some alloys leads to strongly enhanced fatigue properties. The cyclic deformation behavior of UFG Ti-6Al-4V ELI (extra low interstitials) alloy is studied by both strain and stress controlled fatigue tests using plastic strain amplitudes between 3 × 10?4 and 5 × 10?3 and stress amplitudes ranging from 550 to 670 MPa. The UFG microstructures were obtained by equal channel angular pressing (ECAP) with different number of passes followed by a subsequent thermomechanical treatment (TMT). When compared to the conventional grain (CG) size counterpart, the UFG alloy exhibited a pronounced enhancement in the fatigue life in the S–N (Wöhler) diagram. It was also shown that additional UFG processing prior to TMT did not result in any further improvement of the fatigue resistance. Furthermore, microstructural investigations revealed a high cyclic stability of the UFG microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号