首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a candidate dispersant for silver-based isotropically conductive adhesives (ICAs), polyurethane (PU) is an environmentally benign material that can withstand a high deformation rate and that exhibits excellent reliability. In this work we investigated methyl ethyl ketoxime (MEKO) blocked isophorone diisocyanate (IPDI) and MEKO blocked hexamethylene diisocyanate (HDI) as dispersant materials, and we characterize the electrical conductivity, mechanical properties, and reliability of these PU-based ICAs with silver-flake filler content ranging from 30 wt.% to 75 wt.%. Results of temperature–humidity testing (THT) at 85°C and 85% relative humidity (RH) and thermal cycling testing (TCT) at −40°C to 125°C show that these ICAs have excellent reliability. Our experimental results suggest that the MEKO blocked PU dispersants are suitable for preparing ultralow-cost, flexible, high-performance ICAs for printing antennas for ultrahigh-frequency radiofrequency identification (RFID) tags. These tags can potentially be used for identifying washable items and food packaging.  相似文献   

2.
Isotropic conductive adhesives (ICAs) have been developed as an alternative for traditional tin/lead (Sn/Pb) solders for electronic applications. Compared to mature soldering technology, conductive adhesive technology is still in its infant stage, therefore, there are some limitations for current commercial ICAs. Two critical limitations are poor impact performance and unstable contact resistance with nonnoble metal finished components. These limitations seriously hindered the wide applications of ICA's. No current commercial ICAs show both desirable impact performance and stable contact resistance. In this paper, novel conductive adhesives were formulated using mixtures of an epoxide-modified polyurethane resin and a bisphenol-F type epoxy resin and a corrosion inhibitor. Cure profiles, rheology, and dynamic mechanical properties of the conductive adhesives were studied using a differential scanning calorimeter (DSC), a rheometer, and a dynamic mechanical analyzer (DMA), respectively. Impact strength and contact resistance with several nonnoble metals (Sn/Pb, Sn, and copper) of these conductive adhesives were tested and compared to those of a commercial conductive adhesive. It was found that these in-house conductive adhesives showed superior impact performance and substantially stable contact resistance with nonnoble metal finished components during elevated temperature and humidity aging  相似文献   

3.
文中研究了不同种类硅油、不同金属氧化物导热填料及其颗粒直径大小分布、不同偶联剂种类等因素对导热硅脂产品的接触热阻、导热系数、界面厚度、粘度、耐渗油性等性能的影响。结果证明:二甲基硅油与球形氧化铝导热填料搭配使用可以获得更高的填料填充量,通过加入偶联剂可大大降低导热硅脂产品的粘度并提高导热硅脂的耐渗油性,而适中的导热填料颗粒大小分布以及较小的界面厚度可以得到高导热系数以及超低接触热阻的导热硅脂产品。  相似文献   

4.
The use of Ir diffusion barriers in Ni/Au-based Ohmic contacts to p-type CuCrO2 layers was investigated. A specific contact resistance of ~5 × 10−4 Ω cm2 was achieved after annealing at 500°C for the Ir-containing contacts, and the contacts were rectifying for lower anneal temperatures. In this case, the contact resistance was basically independent of the measurement temperature, indicating that tunneling is the dominant transport mechanism in the contacts. The morphology for the Ir-containing contacts was still smooth at 500°C although Auger electron spectroscopy depth profiling showed that some of the nickel had diffused to the surface and had oxidized. Contacts annealed at 800°C showed that some copper and most of the nickel had diffused to the surface and oxidized. The presence of the Ir diffusion barrier does increase the thermal stability of the contacts by ∼200°C compared to conventional Ni/Au contacts. By contrast, the use of other materials such as TaN, ZrN, and W2B5 as the diffusion barrier led to poorer thermal stability, with the contact resistance increasing sharply above 400°C.  相似文献   

5.
Electrically nonconductive thermal pastes have been attained using carbon (carbon black or graphite) as the conductive component and ceramic (fumed alumina or exfoliated clay) as the nonconductive component. For graphite particles (5 μm), both clay and alumina are effective in breaking up the electrical connectivity, resulting in pastes with electrical resistivity up to 1013Ω·cm and thermal contact conductance (between copper surfaces of roughness 15 μm) up to 9 × 104 W/m2·°C. For carbon black (30 nm), clay is more effective than alumina, providing a paste with resistivity 1011 Ω·cm and thermal contact conductance 7 × 104 W/m2·°C. Carbon black increases the thermal stability, whereas either graphite or alumina decreases the thermal stability. The antioxidation effect of carbon black is further increased by the presence of clay up to 1.5 vol.%. The addition of clay (up to 0.6 vol.%) or alumina (up to 2.5 vol.%) to graphite paste enhances the thermal stability.  相似文献   

6.
This paper investigates a set of theoretical equations for analyzing the thermal properties of isotropic conductive adhesives (ICAs) containing several types of Cu filler particles. The thermal conductivity of ICAs containing randomly dispersed filler particles can be simulated well by Bruggeman’s equation for spherical particles and by Kanari’s equation for flake particles. The effect on the thermal conductivity of any residual voids can be taken into account in the analysis by the additional application of Bruggeman’s or Kanari’s equations with the appropriate shape factor. The linear thermal expansion coefficient of the ICAs was analyzed using Schapery’s scheme. The thermal expansion coefficients of ICAs with 40–50 vol.% of filler particles range between Schapery’s upper and lower limits. As the particle size of the filler decreases, the thermal expansion coefficient starts to approach the lower limit at a lowr volume fraction of the filler particles. The transition behavior of the thermal expansion coefficient is related to the characteristics of the network structure formed by percolating the filler particles.  相似文献   

7.
With the driving force of "green" revolution in the electronics industry, tremendous efforts have been made in pursuing lead-free alternatives. Although lately lead-free alloys have drawn a lot of attention, their technical weaknesses, such as high processing temperature, poor wetting and high surface tension, limit their applications on the thermally sensitive, flexible, nonsolderable substrates and the ultra-fine pitch size flip chip interconnection. Conventional isotropically conductive adhesives (ICAs) have been used widely in surface mount and die-attach technologies for electrical interconnection and heat dissipation. The low temperature processing of ICAs is one of the major advantages over lead-free solders, which brings a low system stress, simple manufacture process and the like. In order to enhance the contact resistance of ICAs, the low melting point alloy (LMA) incorporating technology has been developed by our group. In this paper, LMA fusing methods were studied, since nonfused LMA in ICAs after a curing process can adversely affect the physical property and contact resistance stability. A differential scanning calorimeter (DSC) was used for the basic examination of depleting rate of LMAs in the typical ICAs. The cross-sectional morphology, LMA distribution and intermetallic compound were investigated by a scanning electron microscope (SEM). In addition, contact resistance for the ICA formulation incorporated with LMAs under elevated temperature and humidity was evaluated.  相似文献   

8.
The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.  相似文献   

9.
The thermal stability of the Cu/Cr/Ge/Pd/n+-GaAs contact structure was evaluated. In this structure, a thin 40 nm layer of chromium was deposited as a diffusion barrier to block copper diffusion into GaAs. After thermal annealing at 350°C, the specific contact resistance of the copper-based ohmic contact Cu/Cr/Ge/Pd was measured to be (5.1 ± 0.6) × 10−7 Ω cm2. Diffusion behaviors of these films at different annealing temperatures were characterized by metal sheet resistance, X-ray diffraction data, Auger electron spectroscopy, and transmission electron microscopy. The Cu/Cr/Ge/Pd contact structure was very stable after 350°C annealing. However, after 400°C annealing, the reaction of copper with the underlying layers started to occur and formed Cu3Ga, Cu3As, Cu9Ga4, and Ge3Cu phases due to interfacial instability and copper diffusion.  相似文献   

10.
为了给铜箔积层板设计提供科学指导,采用动力学分析(DMA)和热力学分析(TMA)等表征手段,研究了二氧化硅和硅烷偶联剂对产品尺寸稳定性及力学强度的影响。结果表明:(1)二氧化硅(未使用硅烷偶联荆处理)添加比例为30%时,热膨胀系数为2.76%,产品的储能模量和力学损耗tanδ拐点温度分别达到15615MPa和163.53℃,产品的尺寸稳定性和力学强度最好。(2)二氧化硅和硅烷偶联剂添加比例分别为25%和1.5%时,产品的储能模量和力学损耗tanδ拐点温度分别达到14644MPa和169.5℃,表明添加硅烷偶联剂能够显著提高产品的力学强度。  相似文献   

11.
《Microelectronics Reliability》2014,54(12):2944-2950
Conductive adhesives play a major role in the electronic packaging industry as an alternative to solder due to their potential advantages that include mild processing conditions and superior thermo-mechanical performance. In a conductive adhesive interconnection, adequate mechanical and electrical performance and long-term reliability are critical.In this paper, the reliability of solderable isotropic conductive adhesive (ICA) interconnections was investigated. Reliability testing was performed via thermal shock (−55 to 125 °C, 1000 cycles) and high-temperature and high-humidity tests (85 °C, 85% RH, 1000 h). The interfacial microstructure of the solderable ICA was also investigated. Additionally, the fracture mode was investigated via mechanical pull strength testing before and after the reliability test. The electrical resistance of the solderable ICA interconnection showed improved stability compared to conventional ICAs, and similar stability to conventional solder paste (Sn–3Ag–0.5Cu and Sn–58Bi) due to the metallurgical interconnection formed by the molten LMPA fillers between the corresponding metallization layers. After the reliability tests, the grown IMC layer was composed of Cu6Sn5 (η-phase) and Cu3Sn (ε-phase), and the scallop-type IMC transformed into a layer-type IMC. The fracture propagated along the Cu–Sn IMC/SnBi interface and the fracture surface showed a semi-brittle fracture mode mixed with cleavage and ductile tear bands.  相似文献   

12.
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.  相似文献   

13.
硅烷偶联剂对太阳电池铝浆性能的影响及分析   总被引:1,自引:0,他引:1  
在晶体硅太阳电池制造过程中,铝电极是通过丝网印刷-烘干-烧结制成的。该过程中铝电极膜层与传送网带发生相对摩擦,易导致铝膜表面产生划痕、起灰。重点研究了添加不同质量分数w(硅烷偶联剂)(0.5%~3.0%)对铝浆有机载体的表面张力、铝膜表面划痕、起灰、导电性能的影响规律。结果表明:当w(硅烷偶联剂)为2.5%时,有机载体的表面张力可从约30mN/m降低至25.69mN/m,提高了铝粉颗粒之间以及铝膜与硅片之间的黏附作用,从而减少划痕和灰化,进而可使铝电极的接触电阻由0.60?降低至0.19?。  相似文献   

14.
In this study, a simple one-step microwave-assisted method was developed to synthesize Cu and Cu-Ag particles for application in electrically conductive adhesive (ECA). The particle size of the obtained Cu particles was about 1???m to 3???m, whereas Cu-Ag particles were in the range of 0.1???m to 1.0???m. ECA samples were cured at 175°C for 1?h. Results revealed that the as-cured ECAs showed significant differences in electrical resistivity. The resistivity of Cu-filled ECA was on the order of 10?5????cm, which was lower than the Cu-Ag-filled ECAs with resistivity on the order of 10?3????cm. The thermal stability of the ECAs was studied under high-temperature exposure at 125°C for 1000?h. Results showed that Cu-filled ECA was thermally stable for 1000?h of aging, whereas Cu-Ag-filled ECAs were thermally stable for aging time above 100?h.  相似文献   

15.
Although there have been many years of development, the degradation of the electrical performance of anisotropically conductive adhesive or film (ACA or ACF) interconnection for flip-chip assembly is still a critical drawback despite wide application. In-depth study about the reliability and degradation mechanism of ACF interconnection is necessary. In this paper, the initial contact resistance, electrical performance after reliability tests, and degradation mechanisms of ACF interconnection for flip-chip-on-flex (FCOF) assembly were studied using very-low-height Ni and Au-coated Ni-bumped chips. The combination of ACF and very-low-height bumped chips was considered because it has potential for very low cost and ultrafine pitch interconnection. Contact resistance changes were monitored during reliability tests, such as high humidity and temperature and thermal cycling. The high, initial contact resistance resulted from a thin oxide layer on the surface of the bumps. The reliability results showed that the degradation of electrical performance was mainly related to the oxide formation on the surface of deformed particles with non-noble metal coating, the severe metal oxidation on the conductive surface of bumps, and coefficient of thermal expansion (CTE) mismatch between the ACF adhesive and the contact conductive-surface metallization. Some methods for reducing initial contact resistance and improving ACF interconnection reliability were suggested. The suggestions include the removal of the oxide layer and an increase of the Au-coating film to improve conductive-surface quality, appropriate choice of conductive particle, and further development of better polymeric adhesives with low CTE and high electrical performance.  相似文献   

16.
Large shear stresses may develop at interfaces between dissimilar materials during thermal excursions when there is a significant difference in their coefficients of thermal expansion. The shear stress may cause interfaces to slide via diffusional process, thereby accommodating the relative dimensional changes between the two materials. This phenomenon presents a significant reliability issue in three-dimensional (3-D) interconnect structures involving through-silicon vias (TSVs), which are subjected not only to continuous thermal cycling but also to large electric current densities during service. This paper reports experimental evidence of interfacial sliding between Cu and Si in Cu-filled TSVs during thermal cycling conditions, and in the presence of electric current. Two different thermal cycling conditions were used: (i) small ΔT thermal cycling (−25°C to 135°C) and (ii) large ΔT thermal cycling (25°C to 425°C). Prior to thermal cycling, a few Cu-filled TSV samples were annealed for 30 min at 425°C. Cu intruded inside Si in nonannealed samples during small ΔT thermal cycling, whereas protrusion of Cu relative to Si occurred during all other thermal excursions. Application of electric current biased the net displacement of the Cu in the direction of electron flow, leading to enhanced protrusion (or intrusion) of Cu relative to the thermal cycling only (i.e., without electric current) condition. A simple one-dimensional analytical model and associated numerical simulations are utilized to rationalize the experimental observations.  相似文献   

17.
The Al nonalloyed ohmic contacts were fabricated on MgxZn1−xO (0≤x≤0.2) thin films. HCl surface treatment significantly reduced the specific contact resistances to value around 10−4 Ω cm2. X-ray photoelectron spectroscopy (XPS) analysis revealed that the HCl treatment increased the oxygen vacancy density and introduced chlorine to the semiconductor surface, resulting in a thin conductive layer and thus reduced specific contact resistance. A subsequent oxygen plasma treatment reduced the oxygen vacancy density, and correspondingly increased the specific contact resistance. Al-ZnO contacts were insensitive to the HCl treatment, due to the formation of a highly conductive Al-doped thin interface layer.  相似文献   

18.
Conventional isotropic conductive adhesives (ICAs) are composed of a polymeric matrix and silver (Ag) flakes. As an alternative to lead-bearing solder, ICAs offer a number of benefits, but limitations do exist for ICA technology. ICAs filled with silver flakes generally show higher initial contact resistance, unstable contact resistance, and inferior impact strength. In this study, a new class of isotropic conductive adhesives was developed by using two different fillers, silver flakes and a low-melting-point-alloy filler, into the ICA formulations. After curing, the metallurgical connections between silver particles, and between silver particles and nickel (Ni) substrate were observed using scanning electron microscopy (SEM). Electrical properties including bulk resistance, initial contact resistance, and contact resistance shifts of the ICA were investigated and compared to those of a commercial ICA, an in-house ICA filled with only the silver flake, and a eutectic Sn/Pb solder. It was found that: (1) the low-melting-point alloy filler could wet the silver flakes and nickel substrate to form metallurgical connections, (2) this ICA had much lower bulk resistance than the commercial ICA and the in-house ICA filled with only the silver flake, and (3) this ICA showed especially low initial contact resistance and more stable contact resistance during aging on nickel metal compared to the ICA filled only with silver flakes  相似文献   

19.
The use of TaN, TiN, and ZrN diffusion barriers for Ti/Al-based contacts on n-GaN (n ∼ 3 × 1017 cm−3) is reported. The annealing temperature (600–1,000°C) dependence of the Ohmic contact characteristics using a Ti/Al/X/Ti/Au metallization scheme, where X is TaN, TiN, or ZrN, deposited by sputtering was investigated by contact resistance measurements and Auger electron spectroscopy (AES). The as-deposited contacts were rectifying and transitioned to Ohmic behavior for annealing at ≥600°C. A minimum specific contact resistivity of ∼6 × 10−5 Ω-cm−2 was obtained after annealing over a broad range of temperatures (600–900°C for 60 s), comparable to that achieved using a conventional Ti/Al/Pt/Au scheme on the same samples. The contact morphology became considerably rougher at the high end of the annealing range. The long-term reliability of the contacts at 350°C was examined; each contact structure showed an increase in contact resistance by a factor of three to four over 24 days at 350°C in air. AES profiling showed that the aging had little effect on the contact structure of the nitride stacks.  相似文献   

20.
导电相和固化剂对铜系导电涂料性能的影响   总被引:1,自引:0,他引:1  
利用IR、SEM等手段,较详细地研究了铜粉–环氧树脂体系中固化剂与铜粉的相互作用,并探讨了铜粉用量、形状对涂料导电性能的影响规律。结果表明:固化剂(最佳用量为20%左右)可以通过形成配合物的反应,有效除去铜粉表面的氧化物,极大改善涂料导电性,使填充75%铜粉的体系具有约0.2×104Ω·m的体积电阻率。应用渗流模型和导电通道理论分析铜粉的用量、形状对涂料导电性能的影响规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号