首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用化学气相沉积法,在Si衬底、蓝宝石衬底和SiC衬底上生长石墨烯材料,研究石墨烯的表面形貌、缺陷、晶体质量和电学特性。原子力显微镜、光学显微镜和拉曼光谱测试表明,Si3N4覆盖层可以有效抑制3C-SiC缓冲层的形成;低温生长有利于保持材料表面的平整度,高温生长有利于提高材料的晶体质量。5.08 cm蓝宝石衬底上石墨烯材料,室温下非接触Hall测试迁移超过1000 cm2·V-1·s-1,方块电阻不均匀性为2.6%。相对于Si衬底和蓝宝石衬底,SiC衬底上生长石墨烯材料的表面形态学更好,缺陷更低,晶体质量和电学特性更好,迁移率最高为4900 cm2·V-1·s-1。  相似文献   

2.
高温条件下裂解碳化硅(SiC)单晶,在直径5cm的4H-SiC(0001)面制备出单层石墨烯。利用光电化学刻蚀方法,使KOH刻蚀液与SiC发生反应,降低石墨烯与衬底之间的相互作用力,去掉原位生长过程中SiC衬底与石墨烯之间存在的缓冲层,获得准自由的双层石墨烯。首先通过对比不同的电流密度和光照强度,总结出电流密度为6mA·cm-2、紫外灯与样品间距为3cm时,石墨烯缓冲层的去除效率以及石墨烯质量皆为最佳。采用此优化后工艺处理的样品,拉曼光谱表明原位生长的缓冲层与衬底脱离,表现出准自由石墨烯的特性。X射线光电子能谱(XPS)C1s谱图中代表上层石墨烯与衬底Si悬键结合的S1、S2特征峰消失,即石墨烯缓冲层消失。通过分析刻蚀过程中的电化学曲线,提出了刻蚀过程的化学反应过程中的动态特性。  相似文献   

3.
氮化铝(AlN)是直接带隙半导体,具有超宽禁带宽度(6.2 eV)、高热导率[3.2 W/(cm·K)]、高表面声波速率(VL=10.13×105 cm/s,VT=6.3×105 cm/s)、高击穿场强和稳定的物理化学性能,是紫外/深紫外发光材料的理想衬底,由此制作的AlxGa1–xN材料,还可以实现200~365 nm波段内的连续发光;可以制作耐高压、耐高温、抗辐射和高频的电子器件,是具有巨大潜力的新一代半导体材料。本文介绍了物理气相传输法异质外延生长AlN单晶的原理,并从碳化硅(Si C)衬底上AlN单晶生长研究历程、Al N/SiC衬底生长AlN晶体以及偏晶向SiC衬底生长AlN晶体3个方面综述了SiC衬底上异质外延生长AlN晶体的研究进展。最后简述了SiC衬底上生长AlN单晶面临的挑战和机遇,展望了AlN材料的未来发展前景。  相似文献   

4.
孙丽  陈秀芳  张福生  于璨璨  赵显  徐现刚 《化工学报》2016,67(10):4356-4362
高温条件下裂解碳化硅(SiC)单晶,在直径5 cm的4H-SiC(0001)面制备出单层石墨烯。利用光电化学刻蚀方法,使KOH刻蚀液与SiC发生反应,降低石墨烯与衬底之间的相互作用力,去掉原位生长过程中SiC衬底与石墨烯之间存在的缓冲层,获得准自由的双层石墨烯。首先通过对比不同的电流密度和光照强度,总结出电流密度为6 mA·cm-2、紫外灯与样品间距为3 cm时,石墨烯缓冲层的去除效率以及石墨烯质量皆为最佳。采用此优化后工艺处理的样品,拉曼光谱表明原位生长的缓冲层与衬底脱离,表现出准自由石墨烯的特性。X射线光电子能谱(XPS)C1s谱图中代表上层石墨烯与衬底Si悬键结合的S1、S2特征峰消失,即石墨烯缓冲层消失。通过分析刻蚀过程中的电化学曲线,提出了刻蚀过程的化学反应过程中的动态特性。  相似文献   

5.
导模法和温度梯度法生长r面蓝宝石   总被引:1,自引:0,他引:1  
r面(0112)蓝宝石晶体可用作制备非极性GaN薄膜的衬底.采用温度梯度法(temperature gradient technique,TGT)和导模法(edge-defined film-fedcrystal growth,EFG)生长了质量良好的r面蓝宝石晶体.利用双晶衍射、光学显微镜、光谱仪观察和分析了晶体的结构和缺陷.结果表明:TGT法生长的r蓝宝石晶体的双晶摇摆曲线对称性好,半高宽值仅为18rad·s.位错密度为4×103cm-2,透过率达83%,晶体质量好.与TGT法相比,EFG法生长的r面蓝宝石晶体的结构完整性较差.位错密度为5×105cm-2,透过率仅为75%.但是EFG法具有晶体生长速度快,后期加工成本低的优点.  相似文献   

6.
采用低压化学气相沉积(LPCVD)法分别在 Si(100)和 Si(111)衬底上制备了 Al 掺杂的3C-SiC 薄膜。采用 X 射线衍射、扫描电子显微镜、Raman 光谱对所制备薄膜的微结构、形貌以及内部应力的演变进行分析。结果表明:在 Si(100)衬底上制备的 Al 掺杂 SiC 薄膜具有较好的结晶质量,而且结晶质量受 Al 掺杂浓度的影响比较大。Al 掺杂 SiC 薄膜的生长模式为二维层状生长模式。Si(100)衬底上所制备的 Al 掺杂 SiC 薄膜表面为层状的四边形结构,而 Si(111)衬底上的 Al 掺杂 SiC 薄膜表面为层状的截角三角形结构。Si(100)衬底上的薄膜厚度略大于 Si(111)衬底上的。由于 Al 离子的掺入和薄膜厚度的增加,Si(100)衬底上所制备的 Al 掺杂 SiC 薄膜内部的应力得到很好的释放。Si(111)衬底上的 Al 掺杂 SiC 薄膜内部的应力则由张应力模式转为压应力模式,而且纵光学声子(LO)、横光学声子(TO)特征峰分离变大,出现这种现象的原因可能与 Al3+替代 Si4+使 SiC离子性增强和生长模式的转变有关。  相似文献   

7.
刘静  张羽 《硅酸盐通报》2016,35(11):3893-3897
以多晶碘化铅(PbI2)为原料,采用垂直布里奇曼法进行单晶生长,研究了PbI2单晶的生长特性,并研究了不同生长条件下晶体的宏观形貌、显微形貌、缺陷以及Ⅰ-Ⅴ特性.研究表明在温度梯度为5 K/cm时生长的碘化铅与温度梯度为0.6 K/cm以及1 K/cm生长的单晶相比,晶体质量较高,宏观缺陷和显微缺陷均有所减少,电阻率从6.7×108 Ω·cm以及6.8×108 Ω·cm提高至3.3 × 109Ω·cm可以有效提高晶体的探测效率.优化生长时的温度梯度有利于碘化铅单晶质量的提高,使其各项性能更加适用于室温核辐射探测器.  相似文献   

8.
正如何在绝缘衬底上形成大面积高质量的石墨烯还是个难题。所以,不论是探索制备石墨烯的新方法,还是寻找合适的生长石墨烯的基底材料,以便将石墨烯新奇的物理性质在室温下呈现出来,都是石墨烯基础研究与器件应用方面所亟待解决的问题。金刚石是集众多优异性能于一身的绝缘材料,如果石墨烯能够制备在金刚石衬底上,相比于其他衬底材料,有利于在室温下呈现出石墨烯特殊的机械,导热、电学和光学等性  相似文献   

9.
采用脉冲激光溅射法分别在Sr Ti O3(STO)和Si(001)衬底上制备出La0.7Sr0.3Mn O3(LSMO)薄膜。通过X射线衍射仪、原子力显微镜、能谱仪以及磁性测量系统研究了薄膜晶体结构、表面形貌、成分以及电阻-温度特性。结果表明:STO衬底上的LSMO薄膜比Si衬底上的LSMO薄膜电阻低,金属-绝缘转变温度高。  相似文献   

10.
宽带隙半导体材料SiC研究进展及其应用   总被引:8,自引:0,他引:8  
SiC是第3代宽带隙半导体的核心材料之一,具有极为优良的物理化学性能,应用前景十分广阔,本文综合介绍SiC的基本特性,材料的生长技术(包括体单晶生长和薄膜外延生长技术),SiC基器件的研发现状,应用领域及发展前景,同时还介绍了作者用脉冲激光淀积法在Si衬底上制备出单晶4H-SiC薄膜的研究结果。  相似文献   

11.
蔚翠  何泽召  刘庆彬  李娴  谢丹  蔡树军  冯志红 《化工学报》2017,68(11):4423-4427
在蓝宝石衬底上,利用PECVD在相对较低的温度和相对短的时间制备石墨烯。实验发现,在950℃,生长15 min,可制备纳米晶石墨烯。所制备的石墨烯为双层结构,存在较多的缺陷,使得其适合用于制作气敏传感器。制作的纳米晶石墨烯气敏传感器对甲醛气体显示出良好的响应和恢复特性。分析发现纳米晶石墨烯中大量的晶界和褶皱使气体的吸附和解吸附能垒降低是其表现出良好气敏特性的主要原因。  相似文献   

12.
在蓝宝石衬底上,利用PECVD在相对较低的温度和相对短的时间制备石墨烯。实验发现,在950℃,生长15 min,可制备纳米晶石墨烯。所制备的石墨烯为双层结构,存在较多的缺陷,使得其适合用于制作气敏传感器。制作的纳米晶石墨烯气敏传感器对甲醛气体显示出良好的响应和恢复特性。分析发现纳米晶石墨烯中大量的晶界和褶皱使气体的吸附和解吸附能垒降低是其表现出良好气敏特性的主要原因。  相似文献   

13.
3C-SiC薄膜的外延生长一直是SiC材料制备领域的一个热点,单晶Si衬底异质外延3C-SiC是实现大尺寸、低成本薄膜的有效方法,备受人们关注.单晶Si与3C-SiC之间存在较大的晶格失配(20%)和热膨胀系数差异(8%),严重制约着高质量单晶薄膜的制备.本文对单晶Si衬底异质外延3C-SiC薄膜的基本原理和工艺过程进行了总结,着重介绍了薄膜生长中的缺陷和可控掺杂方面的研究进展以及面临的挑战,并对今后的研究热点做了归纳展望.  相似文献   

14.
秦俊 《山西化工》2024,(2):120-121+137
可用于LED衬底的材料主要有硅、碳化硅、蓝宝石、氮化镓等。由于硅单晶和氮化镓晶格匹配太差无法商业化应用;碳化硅单晶成本价格较高,目前市价约是蓝宝石晶体的5倍以上;氮化镓单晶制备更困难,虽然同质外延质量最好,但价格是蓝宝石晶体的数百倍。综上所述,预计未来30年内,蓝宝石单晶还是LED衬底材料的理想选择。目前,蓝宝石的生长方法主要有提拉法(Cz)、导模法(EFG)、泡生法(Ky)、热交换法(HEM)等。本文介绍了各种蓝宝石长晶方法,并对其优缺点进行了分析。通过分析热交换法在生长大尺寸无缺陷晶体具有明显优势,结合热交换法原理开发了氦气管道,为降低热交换法生长蓝宝石成本提供了一种可行装置和方法。  相似文献   

15.
正近期,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室SOI材料与器件课题组在锗基石墨!烯的取向生长机制方面取得进展。课题组研究人员发现衬底表面原子台阶对于石墨烯取向生长的重要性,并且与华东!!师范大学合作借助于第一性原理DFT理论计算分析得到石墨烯单晶畴在(110)晶面的锗衬底上取向生长的物理机理,为获得晶圆级的单晶石墨烯材料奠定了实验与理论基础,有助于推动石墨烯材料真正应用于大规模集成电路技术。  相似文献   

16.
SiC单晶衬底中的微管缺陷对SiC基器件是一种致命的缺陷,会严重影响SiC功率器件的成品率.基于物理气相传输(PVT)法,通过改进生长设计装配制备了绝对零微管缺陷6 in的n型4H-SiC单晶.从结晶学和动力学原理对改进生长设计装配消除微管的机理进行分析,阐明了单晶生长过程中微管分解和闭合的机制.采用的优化生长设计方案不仅有利于提高SiC单晶生长的稳定性,更可以提高SiC单晶的结晶质量,达到快速降低微管缺陷目的.所制备的无微管缺陷、大尺寸6 in n型4H-SiC单晶更加适合制作高压以及特高压功率器件.  相似文献   

17.
《硅酸盐学报》2021,49(4):736-742
SiC单晶衬底中的微管缺陷对SiC基器件是一种致命的缺陷,会严重影响SiC功率器件的成品率。基于物理气相传输(PVT)法,通过改进生长设计装配制备了绝对零微管缺陷6in的n型4H-SiC单晶。从结晶学和动力学原理对改进生长设计装配消除微管的机理进行分析,阐明了单晶生长过程中微管分解和闭合的机制。采用的优化生长设计方案不仅有利于提高SiC单晶生长的稳定性,更可以提高SiC单晶的结晶质量,达到快速降低微管缺陷目的。所制备的无微管缺陷、大尺寸6inn型4H-SiC单晶更加适合制作高压以及特高压功率器件。  相似文献   

18.
以300目鳞片状石墨为原料,采用Hummers法制备氧化石墨并用电化学还原法制备石墨烯修饰电极,分别用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)对石墨,氧化石墨,氧化石墨烯和石墨烯的结构进行了表征。并以石墨烯修饰电极作为电极,用循环伏安法测试了其在含有一定浓度抗坏血酸的磷酸氢二钠-柠檬酸溶液中的电化学行为,选择了测试的最佳条件。在最佳实验条件下,采用计时电量法、OCPT(开路电位)测试抗坏血酸的电化学行为。实验结果表明,抗坏血酸的电化学氧化是单电子的反应,扩散系数D=3.24×10-6cm2·s~(-1),反应速率常数k0=3.78×10-6cm·s~(-1),电荷传递系数β=0.310。  相似文献   

19.
采用低压化学气相沉积(LPCVD)法分别在Si(100)和Si(111)衬底上制备了Al掺杂的3C-Si C薄膜。采用X射线衍射、扫描电子显微镜、Raman光谱对所制备薄膜的微结构、形貌以及内部应力的演变进行分析。结果表明:在Si(100)衬底上制备的Al掺杂Si C薄膜具有较好的结晶质量,而且结晶质量受Al掺杂浓度的影响比较大。Al掺杂Si C薄膜的生长模式为二维层状生长模式。Si(100)衬底上所制备的Al掺杂Si C薄膜表面为层状的四边形结构,而Si(111)衬底上的Al掺杂Si C薄膜表面为层状的截角三角形结构。Si(100)衬底上的薄膜厚度略大于Si(111)衬底上的。由于Al离子的掺入和薄膜厚度的增加,Si(100)衬底上所制备的Al掺杂Si C薄膜内部的应力得到很好的释放。Si(111)衬底上的Al掺杂Si C薄膜内部的应力则由张应力模式转为压应力模式,而且纵光学声子(LO)、横光学声子(TO)特征峰分离变大,出现这种现象的原因可能与Al3+替代Si4+使Si C离子性增强和生长模式的转变有关。  相似文献   

20.
《炭素技术》2016,(3):60-60
近期,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室SOI材料与器件课题组在锗基石墨!烯的取向生长机制方面取得进展。课题组研究人员发现衬底表面原子台阶对于石墨烯取向生长的重要性,并且与华东!!师范大学合作借助于第一性原理DFT理论计算分析得到石墨烯单晶畴在(110)晶面的锗衬底上取向生长的物理机理,为获得晶圆级的单晶石墨烯材料奠定了实验与理论基础,有助于推动石墨烯材料真正应用于大规模集成电路技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号