首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
PbSe quantum-dot solids are of great interest for low cost and efficient photodetectors and solar cells. We have prepared PbSe quantum-dot solids with high charge carrier mobilities using layer-by-layer dip-coating with 1,2-ethanediamine as substitute capping ligands. Here we present a time and energy resolved transient absorption spectroscopy study on the kinetics of photogenerated charge carriers, focusing on 0-5 ps after photoexcitation. We compare the observed carrier kinetics to those for quantum dots in dispersion and show that the intraband carrier cooling is significantly faster in quantum-dot solids. In addition we find that carriers diffuse from higher to lower energy sites in the quantum-dot solid within several picoseconds.  相似文献   

2.
Room temperature photodetection with HgTe colloidal quantum films is reported between 2 and 5 μm for particles of sizes between ~5 and ~12 nm diameter, and photodetection extends to 7 μm at 80 K. The size-tuning of the absorption of HgTe colloidal quantum dots, their optical cross section and the infrared absorption depth of films are measured. The tuning with radius is empirically given by [see formula in text] where R is in nm. The optical cross section of the colloidal dots at 415 nm is approximately proportional to their volume and given by σ(Hg)(415) = 2.6 ± 0.4 10(-17) cm(2)/mercury atom. The size-dependent optical cross section at the band edge ~1.5 10(-15) cm(2) is consistent with the expected oscillator strength of the quantum dots. The absorption depth of HgTe colloidal dot films is short, about 1-2 μm, which is an advantage for thin film devices. These properties agree rather well with the expectation from the k · p model. HgTe colloidal quantum dot thin films show a strong tuning with temperature with a large positive thermal shift between 0.4 and 0.2 meV K(-1), decreasing with decreasing size within the size range studied and this is attributed primarily to electron-phonon effects.  相似文献   

3.
Hybrid graphene-quantum dot phototransistors with ultrahigh gain   总被引:1,自引:0,他引:1  
Graphene is an attractive material for optoelectronics and photodetection applications because it offers a broad spectral bandwidth and fast response times. However, weak light absorption and the absence of a gain mechanism that can generate multiple charge carriers from one incident photon have limited the responsivity of graphene-based photodetectors to ~10(-2)?A?W(-1). Here, we demonstrate a gain of ~10(8) electrons per photon and a responsivity of ~10(7)?A?W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. Strong and tunable light absorption in the quantum-dot layer creates electric charges that are transferred to the graphene, where they recirculate many times due to the high charge mobility of graphene and long trapped-charge lifetimes in the quantum-dot layer. The device, with a specific detectivity of 7?×?10(13) Jones, benefits from gate-tunable sensitivity and speed, spectral selectivity from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.  相似文献   

4.
The general problem of the pairing of strongly interacting elementary excitations producing new quasiparticles such as polarons arises in many areas of solid state physics. Recent interest in polaron formation in semiconductor quantum dots has been motivated by the need to understand the physical nature of the carrier relaxation processes and their role in quantum-dot based devices. We report on the direct observation of polarons in InAs/GaAs self-assembled quantum dots populated by few electrons where the polarons are strongly coupled modes of quantum dot phonons and electron intersublevel transitions. The degree of coupling is varied in a systematic way in a set of samples having electron intersublevel spacing changing from larger to smaller than the longitudinal optical phonon energy. The signature of polarons is evidenced clearly by the observation of a large (12-20 meV) anticrossing for both InAs and GaAs-like quantum dot phonons using resonant Raman spectroscopy.  相似文献   

5.
R. Pate 《Thin solid films》2009,517(24):6798-6802
CdSe colloidal quantum dot / poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyano vinylene)phenylene] hybrid nanocomposite thin films were deposited using resonant infrared matrix-assisted pulsed laser evaporation. The distributions of CdSe colloidal quantum dots within the polymer matrices of as-grown films were evaluated using transmission electron microscopy, and the optical properties of these films were determined by photoluminescence spectroscopy. These measurements demonstrate that: i) depending upon the deposition parameters used, the CdSe colloidal quantum dot distribution can be tuned between two morphology extremes, i.e. clustering or homogenous dispersion; and ii) the constituent materials of the nanocomposite are not damaged in any way that affects structural or optical properties by the deposition process. The demonstrated ability to control nanoparticle distribution within organic films has not been achieved by other deposition techniques and could enhance the performance of optoelectronic devices based on these materials.  相似文献   

6.
Colloidal quantum dots exhibit efficient photoluminescence with widely tunable bandgaps as a result of quantum confinement effects. Such quantum dots are emerging as an appealing complement to epitaxial semiconductor laser materials, which are ubiquitous and technologically mature, but unable to cover the full visible spectrum (red, green and blue; RGB). However, the requirement for high colloidal-quantum-dot packing density, and losses due to non-radiative multiexcitonic Auger recombination, have hindered the development of lasers based on colloidal quantum dots. Here, we engineer CdSe/ZnCdS core/shell colloidal quantum dots with aromatic ligands, which form densely packed films exhibiting optical gain across the visible spectrum with less than one exciton per colloidal quantum dot on average. This single-exciton gain allows the films to reach the threshold of amplified spontaneous emission at very low optical pump energy densities of 90?μJ?cm(-2), more than one order of magnitude better than previously reported values. We leverage the low-threshold gain of these nanocomposite films to produce the first colloidal-quantum-dot vertical-cavity surface-emitting lasers (CQD-VCSEL). Our results represent a significant step towards full-colour single-material lasers.  相似文献   

7.
胶体量子点由于具有高的量子效率、窄的激发光谱、独特的尺寸依赖激发光谱和良好的溶液加工兼容性等优异特性,在高色彩质量显示方面有着巨大的应用潜力。随着量子效率提升及电致发光原理、激子衰减机制、器件结构优化和电荷有效输运等研究的持续深入,QLED的发光效率从小于0.01%提升到20.5%,已接近商业化OLED的效率。从显示技术的长远发展来看,量子点电致发光显示将超越光致发光的量子点增亮膜和量子点彩色滤光片,有望成为下一代主流显示技术。根据"材料—器件—显示"的主线,依次对量子点材料发光特性和材料类别,以及发光器件的结构类型、发光机制和效率提升等方面展开概述,最后简要介绍了量子点电致发光显示的相关技术挑战和发展前景。  相似文献   

8.
Colloidal quantum dots are semiconductor nanocrystals well dispersed in a solvent. The optical properties of quantum dots, in particular the wavelength of their fluorescence, depend strongly on their size. Because of their reduced tendency to photobleach, colloidal quantum dots are interesting fluorescence probes for all types of labelling studies. In this review we will give an overview on how quantum dots have been used so far in cell biology. In particular we will discuss the biologically relevant properties of quantum dots and focus on four topics: labelling of cellular structures and receptors with quantum dots, incorporation of quantum dots by living cells, tracking the path and the fate of individual cells using quantum dot labels, and quantum dots as contrast agents.  相似文献   

9.
Emission of semiconductor quantum dots can be increased via two fundamentally different processes: (i) surface plasmon resonances (plasmonic emission enhancement) and (ii) irradiation with light (photo-induced fluorescence enhancement). In this paper we theoretically and experimentally study the mutual impacts of these processes on each other in quantum dot solids. We show that when thin films of colloidal quantum dots are placed in the vicinity of Au nano-islands, the plasmonic enhancement of the radiative decay rates of quantum dots and Forster energy transfer can hinder the photo-induced fluorescence enhancement of these films. This in turn leads to significant suppression of their plasmonic emission enhancement when they are irradiated with a laser beam. We investigate the impact of the sizes and shapes of the metallic nanoparticles in this process and theoretically analyze how plasmons and energy transfer can hinder the electrostatic barrier responsible for photo-induced fluorescence enhancement.  相似文献   

10.
Huang H  Dorn A  Nair GP  Bulović V  Bawendi MG 《Nano letters》2007,7(12):3781-3786
We demonstrate reversible quenching of the photoluminescence from single CdSe/ZnS colloidal quantum dots embedded in thin films of the molecular organic semiconductor N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) in a layered device structure. Our analysis, based on current and charge carrier density, points toward field ionization as the dominant photoluminescence quenching mechanism. Blinking traces from individual quantum dots reveal that the photoluminescence amplitude decreases continuously as a function of increasing forward bias even at the single quantum dot level. In addition, we show that quantum dot photoluminescence is quenched by aluminum tris(8-hydroxyquinoline) (Alq3) in chloroform solutions as well as in thin solid films of Alq3 whereas TPD has little effect. This highlights the importance of chemical compatibility between semiconductor nanocrystals and surrounding organic semiconductors. Our study helps elucidate elementary interactions between quantum dots and organic semiconductors, knowledge needed for designing efficient quantum dot organic optoelectronic devices.  相似文献   

11.
The paper examines a variety of mechanisms that can shift or broaden the frequencies of acoustic phonons in quantum dots. These mechanisms take on added significance in view of recent indications that a number of potential applications of quantum dots-including some approaches to quantum computing-may be limited by decoherence effects caused by acoustic-phonon interactions in quantum-dot systems.  相似文献   

12.
This work presents a simple method to prepare water-soluble alloyed CdSe-ZnS quantum dots, which photoluminescence are tunable from green to red continuously, through replacing the hydrophobic oleic acid stabilizers with hydrophilic thiol molecules. 3-Mercaptopropionic acid and 2-mercaptoethylamine have been used respectively as the surface substitutes to obtain water-soluble quantum dots with negative and positive surface charges. The methods achieved highly efficient phase transfer (approximately 100%) of quantum dots from non-polar media to water. Different techniques including photoluminescence, ultraviolet-visible absorption, Fourier transform infrared spectra, hydrodynamic diameter and zeta potential have been employed to characterize the products of phase transfer. And the results demonstrate that the obtained quantum dots exhibit a remarkably colloidal stability and have a relatively small hydrodynamic diameter with quantum yield up to 30%, which could benefit the applications of luminescent quantum dots carried out in aqueous media, such as bioimaging, metal ions sensors and photocatalysis.  相似文献   

13.
Optical control of the lateral quantum confinement and number of electrons confined in nanofabricated GaAs/AlGaAs quantum dots is achieved by illumination with a weak laser beam that is absorbed in the AlGaAs barrier. Precise tuning of energy-level structure and electron population is demonstrated by monitoring the low-lying transitions of the electrons from the lowest quantum-dot energy shells by resonant inelastic light scattering. These findings open the way to the manipulation of single electrons in these quantum dots without the need of external metallic gates.  相似文献   

14.
We show that in films of strongly coupled PbSe quantum dots multiple electron-hole pairs can be efficiently produced by absorption of a single photon (carrier multiplication). Moreover, in these films carrier multiplication leads to the generation of free, highly mobile charge carriers rather than excitons. Using the time-resolved microwave conductivity technique, we observed the production of more than three electron-hole pairs upon absorption of a single highly energetic photon (5.7E(g)). Free charge carriers produced via carrier multiplication are readily available for use in optoelectronic devices even without employing any complex donor/acceptor architecture or electric fields.  相似文献   

15.
In this paper, we have studied the fabrication of InP ringlike quantum-dot molecules on GaAs(001) substrate grown by solid-source molecular beam epitaxy using droplet epitaxy technique and the effect of In deposition rate on the physical and optical properties of InP ringlike quantum-dot molecules. The In deposition rate is varied from 0.2 ML/s to 0.4, 0.8 and 1.6 ML/s. The surface morphology and cross-section were examined by ex-situ atomic force microscope and transmission electron microscope, respectively. The increasing of In deposition rate results in the decreasing of outer and inner diameters of InP ringlike quantum-dot molecules and height of InP quantum dots but increases the InP quantum dot and ringlike quantum-dot molecule densities. The photoluminescence peaks of InP ringlike quantum-dot molecules are blue-shifted and FWHM is narrower when In deposition rate is bigger.  相似文献   

16.
Investigations are reported on the x-ray scintillation and imaging application of CdTe quantum dots (QDs) and their polymer nanocomposites. Aqueous CdTe QDs with emissions ranging between 510 and 680 nm were prepared and incorporated into polyvinyl alcohol or polymethyl methacrylate polymer matrices. The x-ray luminescent properties were evaluated and a resolution of 5 lines∕mm was obtained from the nanocomposite films. Additionally, the fast decay time, nonafterglow, and superior spectral match to conventional charge coupled devices, show that CdTe QD nanocomposites have high promise for x-ray imaging applications.  相似文献   

17.
The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.  相似文献   

18.
Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4?W?sr(-1)?m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3?nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850?nm.  相似文献   

19.
The electronic and optical properties of colloidal quantum dots, including the wavelengths of light that they can absorb and emit, depend on the size of the quantum dots. These properties have been exploited in a number of applications including optical detection, solar energy harvesting and biological research. Here, we report the self-assembly of quantum dot complexes using cadmium telluride nanocrystals capped with specific sequences of DNA. Quantum dots with between one and five DNA-based binding sites are synthesized and then used as building blocks to create a variety of rationally designed assemblies, including cross-shaped complexes containing three different types of dots. The structure of the complexes is confirmed with transmission electron microscopy, and photophysical studies are used to quantify energy transfer among the constituent components. Through changes in pH, the conformation of the complexes can also be reversibly switched, turning on and off the transfer of energy between the constituent quantum dots.  相似文献   

20.
We performed a detailed investigation of the structural and optical properties of multi-layers of InP/GaAs quantum dots, which present a type II interface arrangement. Transmission electronic microscopy analysis has revealed relatively large dots that coalesce forming so-called quantum posts when the GaAs layer between the InP layers is thin. We observed that the structural properties and morphology affect the resulting radiative lifetime of the carriers in our systems. The carrier lifetimes are relatively long, as expected for type II systems, as compared to those observed for single layer InP/GaAs quantum dots. The interface intermixing effect has been pointed out as a limiting factor for obtaining an effective spatial separation of electrons and holes in the case of single layer InP/GaAs quantum-dot samples. In the present case this effect seems to be less critical due to the particular carrier wavefunction distribution along the structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号