首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
油气润滑系统广泛应用于高速滚动轴承,油气润滑条件下轴承温升特性与温度场分布是影响轴承极限转速与动态工作稳定性的重要因素.基于高速滚动轴承摩擦学与两相流理论,以角接触球轴承为研究对象,建立了油气润滑条件下轴承与流体域之间的流固耦合模型.利用流体仿真软件Fluent对油气润滑条件下高速角接触球轴承与流体之间的传热方式及温度场分布进行了数值模拟分析,得到了轴承与轴承腔体的温度场分布.并进一步研究了供油量、润滑油粘度、轴承转速和载荷对轴承温升的影响,得到了油气润滑参数等与轴承温度场热平衡之间的关系.结果 表明:轴承转速与径向载荷是影响高速滚动轴承生热量与温升的主要因素,轴承内部温度场分布不均匀,对于特定工况存在最佳供油量与润滑油黏度使轴承温升最小.  相似文献   

2.
高速滚动轴承油气润滑试验研究   总被引:3,自引:0,他引:3  
对高速滚动轴承7006C进行了油气润滑试验研究。测试了油气润滑供油量、润滑油粘度、油气压力和转速对被试轴承温升的影响,确定了高速滚动轴承合理的油气润滑参数。试验表明:随着供油量增大,轴承温度呈现由大变小,再由小变大的渐进变化;随着粘度指数的增大,轴承温升同样呈现由大到小,再由小到大的变化过程;在本试验装置额定的油气压力范围内,随着油气压力增加,轴承温升呈单调下降趋势;随着转速的升高,轴承温升相应地增加。  相似文献   

3.
主轴转速高速化是提高加工中心性能最本质的因素。目前,由于受机床主轴轴承材质及润滑方式的限制,主轴转速高速化受到了一定限制。为此日本有关公司对此进行了开发。 一、主轴轴承的润滑 高速主轴轴承的润滑将由油气润滑代替传统的润滑方式。所谓油气润滑方式,即通过分配器将间歇供给的微量润滑油,借经过过滤的压缩空气连续输入到轴承部位进行润滑;油气润滑是吸取油雾润滑的优点,克服其缺点的一种可靠的润滑方式。它可以降低主轴温升和防止杂物混入。利用油气润滑的主轴,在200~2 0000 r/min时回转精度可控制在lμm(振摆值)。表1是主轴高速…  相似文献   

4.
针对核主泵、船用轴系等特定工况下推力轴承润滑油的进水问题,以46润滑油和68润滑油为例研究润滑油水侵对推力轴承润滑性能的影响。通过黏度测试获得润滑油中水分质量分数为0、0.5%、1.0%时的运动黏度,采用黏温曲线对润滑油含水前后的动力黏度进行表征。将润滑油的黏温关系代入推力轴承的润滑计算当中,获得不同含水量下轴承的最小油膜厚度、温升、流量及功耗等静态特性参数,并分析含水量对推力轴承起飞转速的影响。研究结果表明:润滑油含水后对最小油膜厚度和功耗影响较大,对温升和流量影响较小;随着润滑油含水量的增加最小油膜厚度和功耗均降低,而温升增大,流量减小;使用2种润滑油在不含水和水分质量分数为0.5%时的起飞转速都在50 r/min以下,水分质量分数为1.0%时起飞转速都在50 r/min以上,表明随着含水量的增加起飞转速增大。  相似文献   

5.
设计制造了一种用于高速轴承实验研究的实验台,用于测试供油量、润滑油粘度、油气压力、转速和油气温度对轴承温升的影响.受到润滑油粘度、温升和转速的影响,油气温度和出口压力对轴承温升有明显影响,油气温度越低,出口压力越大,温升越低.结合轴承润滑条件的分析,给出了轴承的润滑参数选取标准和供油量的最佳值.  相似文献   

6.
超高转速条件下主轴轴承内部的润滑特性,是制约电主轴所能够达到的最高转速和影响其动态稳定性的主要因素之一.在油气润滑条件下,利用超高转速电主轴结构,通过改变供油量、转速、轴向预载荷等状态参数,测试反映主轴轴承润滑性能的油膜电阻和轴承部位的温度,对轴承内部的润滑状态性能进行试验研究.结果表明,转速和供油量是影响轴承内部润滑油膜电阻和轴承温升的主要因素,对应于某一转速等特定工况,总存在一个最佳供油量,使轴承能够处于最佳润滑状态;在超高转速条件下,轴承内部会出现严重的"乏油"现象,易导致润滑性能变差、轴承工况条件恶化等.  相似文献   

7.
《轴承》2016,(8)
对圆锥滚子轴承HR32307J进行了油气润滑试验研究,分析了油气润滑输油管长度、轴向预紧力、喷嘴个数、供气压力、转速和供油量对轴承温升的影响,确定了高速滚动轴承合理的油气润滑参数。试验表明:随着输油管道长度、喷嘴个数、供油量的增加,轴承温升呈先降低后升高的趋势;随着轴向预紧力的增加,轴承温升基本呈线性增长;随着供气压力的增长,轴承温升呈下降趋势,且下降趋势逐渐减缓;随着转速的增加,轴承温升呈较大幅度的增长。  相似文献   

8.
喷油润滑系统广泛应用于高速滚动轴承,喷油润滑条件下轴承温升特性是影响轴承动态工作稳定性的重要因素。基于两相流理论,以71904C角接触球轴承为研究对象,建立全轴承模型,采用旋转坐标系描述各组件运动,分析滚动轴承在不同参数下喷油润滑的两相流与传热效率的影响规律。结果表明:随着轴承转速增加,轴承搅拌力矩也相应增加,导致轴承内部温度升高;润滑油运动黏度增加,轴承内部流场搅拌力矩增加,导致轴承温度升高;轴承喷油速度增加,内部流场温度呈现先增加后降低趋势,因此存在一个最佳喷油速度使得轴承温升最低。  相似文献   

9.
为研究脂润滑角接触球轴承温升的影响因素以及润滑脂在轴承运转中的老化过程,对7008C角接触球轴承进行了温升试验,分析了轴向预紧力、转速、室温对轴承温升的影响,并测试了不同转速、运转时间、轴向预紧力下润滑脂表观黏度及红外光谱的变化。结果表明:在一定的轴向预紧力下,轴承温升随轴向预紧力的增加呈先增加后减小再增加的趋势,轴向预紧力对润滑脂表观黏度的影响本质是对轴承温升的影响;轴承温升随着转速和室温的增加而升高,轴承内润滑脂表观黏度降低,说明润滑脂的皂纤维结构已经发生变化;随着轴承运转时间的延长,轴承内润滑脂表观黏度逐渐降低、屈服应力下降;经过长时间运转,润滑脂由于分油,颜色明显加深;短时间内,即使在高速和大轴向预紧力作用下润滑脂也没有发生化学结构的变化。  相似文献   

10.
陈薄  陈国定  王涛 《机械工程学报》2014,50(21):164-173
航空发动机轴承腔精确的润滑与换热设计依赖于对其内油气两相润滑介质流动与换热本质的认识。针对轴承腔内复杂的油气两相润滑介质流动状态,建立轴承腔均匀流体/壁面油膜分层流动分析模型,开展腔内油气两相润滑介质流动特性研究,探讨转子转速和润滑油供油量对均匀流体和壁面油膜两相介质压力、速度以及温度分布的影响。分析模型中,气相介质(含油滴)的等效物理特征参数通过离散油滴和气相介质的组分比例关系确定,各固体壁面与流体介质的对流换热系数根据其各自的传热特性确定。研究结果表明,均匀流体与壁面油膜两相介质的压力随着润滑油供油量的增加而增大,受转子转速的影响较为复杂;均匀流体与壁面油膜两相介质的速度随着转子转速的增高而增大,受润滑油供油量影响较小;均匀流体的温度随着润滑油供油量的增加而减小,受转子转速的影响较小;与均匀流体温度不同,壁面油膜的温度随着转子转速的增加而增大,随着润滑油供油量的增加而减小。建立了轴承腔试验台系统,开展了轴承腔油气两相流动状态下的压力和温度测试,压力和温度试验结果与理论计算结果均具有较好的吻合性,验证了提出的理论分析方法的可靠性。  相似文献   

11.
超高速主轴轴承内部润滑状态分析   总被引:4,自引:0,他引:4  
基于稳态Ree-Eyring模型点接触热弹流润滑理论,采用多重网格法分析了油气润滑超高速主轴轴承在不同结构参数和工况条件下内部各接触区域的润滑状态;通过对轴承内部球与内、外套圈滚道之间的润滑状态进行系统仿真,分析了轴承转速、轴向预载荷、球径和初始接触角等基本参数对超高速主轴轴承内部润滑状态的影响。结果表明:超高速运行状态下的主轴轴承,其内部接触区的润滑油膜温度急剧升高,制约着电主轴轴承极限转速的提高;优化轴承的球径和初始接触角可使轴承内部接触区达到最佳的润滑状态;轴承的轴向预载荷对内部接触区的润滑状态影响不大。  相似文献   

12.
油-气润滑系统是高速电主轴单元的重要组成部分,它对高速电主轴滚动轴承的热态特性有着重要的影响.分析润滑油运动黏度、压缩空气压力、压缩空气流量在不同转速条件下对轴承温升的影响,通过对比分析得到三者对轴承温升和温升梯度的影响图.  相似文献   

13.
为获得润滑状态下三点接触球轴承更为准确的刚度特性,应考虑弹流润滑效应对轴承刚度的影响。文中基于拟静力学模型考虑高速离心力和陀螺力矩效应,根据给定轴承的结构参数和工况,计算滚动体与内外圈的法向接触载荷和各部件的运动速度。将拟静力学模型的计算结果和润滑介质参数代入弹流润滑模型,求解出滚动体与内外圈之间的压力分布和油膜厚度分布。进一步研究了转速、轴向载荷和润滑油的初始黏度对油膜压力和最小油膜厚度的影响。基于弹流润滑理论分析了转速和轴向载荷对轴承接触刚度、油膜刚度及综合刚度的影响。结果表明:转速的提高会大幅增加润滑油膜的整体厚度;润滑油初始黏度的增大会增加油膜厚度;随着轴承转速的提高,轴承的整体轴向刚度和轴向油膜刚度减小;随着轴向载荷的增大,轴承轴向刚度和轴向油膜刚度增大,且差值变化不大。  相似文献   

14.
为揭示全陶瓷球轴承在油润滑条件下内部温度场分布及变化情况,提高全陶瓷球轴承的运转性能与使用寿命,以7007C氮化硅全陶瓷角接触球轴承为研究对象,利用仿真软件模拟分析不同工况和润滑油黏度条件下全陶瓷球轴承腔体内部温度场及润滑油的分布状态;在轴承寿命试验机上进行相同条件下全陶瓷球轴承的动态特性试验,研究在油润滑工况下全陶瓷球轴承的温升特性。结果表明:随着轴承转速的提高,全陶瓷球轴承腔体内温度呈增大趋势,腔体内润滑油体积分数呈减小趋势;更换不同黏度润滑油发现随着润滑油黏度的增大,全陶瓷球轴承腔体内温度场呈现先减小后增大的趋势,存在最优黏度值使全陶瓷球轴承腔体温度达到最小值,轴承服役性能表现最佳。研究成果为实际生产中全陶瓷球轴承最优润滑油的选择提供了技术参考。  相似文献   

15.
研究润滑油中混入水后对轧机油膜轴承热弹流润滑的影响。建立油水两相流体的数学模型,以及轧机油膜轴承热弹流润滑的数学方程,利用多重网格法及多重网格积分法对上述方程进行求解,并分析润滑膜压力、膜厚随含水量、主轴转速、轧制力的变化关系。结果表明:与纯油润滑相比,油水两相流体润滑具有更好的润滑特性,且随着含水量的增加,膜厚增大,承载能力增强;随着主轴转速的增加,膜厚增加,承载能力减小;随着轧制力的增加,膜厚减小,承载能力增强。在油水两相流润滑条件下,热效应对于轧机油膜轴承弹流润滑的影响不能忽略。  相似文献   

16.
在外加磁场主动控制液晶添加剂体的润滑情况下,径向轴承内的旋转主轴会产生涡流热,从而影响主轴和轴承系统的温度和润滑剂的流变性能。利用三维有限元分析方法,并结合一个具体径向轴承摩擦试验台分析了在稳恒磁场下的速度涡流引起的热效应以及轴一轴承系统中温度的变化。分析结果表明,低转速情况下的涡流热效应并不明显,可以忽略不计;而随着转速的提高,润滑区的温度升高越来越大。由于相对较薄的润滑油膜厚度以及导热系数的巨大差别,润滑区温度呈现近似均匀分布。  相似文献   

17.
研究轧机油膜轴承润滑油混入冷却水形成的油水两相流对轴承等温弹流润滑的影响。建立油水两相流体模型和弹流润滑方程,研究油膜轴承在等温条件下的润滑特性,分析流体润滑膜的压力、膜厚随含水量、滑滚比、轴颈间隙、主轴转速和轧制力的变化关系。结果表明:随着含水量的增加,油水两相流体由油包水流型转化为水包油流型,压力变化不大,膜厚先增加后减小,油包水流型作为润滑剂时润滑性能最优;随着滑滚比和轧机油膜轴承主轴转速的增加,压力减小、膜厚增加,而随着轴颈间隙和外部轧制力的增加,压力增加、膜厚减小。  相似文献   

18.
夏粉玲  周应昌 《机械》2007,34(9):28-30
为了满足主轴的高速化,主轴轴承的润滑方式直接影响着主轴转速的提高,对各种润滑方式、油量与轴承温升及磨擦损失之间的关系进行比较,并对目前使用较广泛的油气润滑系统进行了分析.  相似文献   

19.
在受力分析的基础上,利用弹性流体动力学润滑理论和多种网格法,计算超高转速条件下主轴轴承内部球滚动体与内、外滚道之间的润滑油膜厚度,以及轴承内部的润滑油膜阻尼。结果表明,超高转速条件下,转速增加,轴承内部弹流润滑油膜阻尼减小,这不利于减小转子系统的动态响应;径向预载荷增加,轴承内部弹流润滑油膜阻尼增加,有利于减小转子系统的动态响应。超高转速条件下,运行速度和径向预载荷对轴承内部润滑油膜阻尼的影响较大,在研究超高速电主轴轴承-转子系统动力学和动态响应时,应充分考虑油膜阻尼的影响。  相似文献   

20.
建立某V型8缸内燃机曲轴主轴承的热弹性流体动力学(TEHD)仿真模型,并对各主轴承润滑状况进行分析.针对润滑状况较差的第3主轴承,分析油槽开设方案、相对间隙、轴承宽度和润滑油特性对其润滑状况的影响.结果表明,随着相对间隙的增大,主轴承最小油膜厚度先增大后减小,当间隙过小时,摩擦功耗较大,润滑油温度较高,油膜厚度小;当间隙过大时,泄漏的润滑油较多,油膜厚度减小,且冲击振动大.主轴承的宽径比要适当,轴承宽度过小,油膜厚度偏小,承载能力过低;轴承宽度过大,润滑面积增大,润滑油流量相对减小,摩擦产生热量增加.研究表明,该主轴承适宜在上瓦开设油槽,轴承间隙选为25μm,宽度选为30 mm较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号