首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
四级轴流涡轮变工况数值分析   总被引:3,自引:0,他引:3  
祁明旭  康顺 《热力透平》2005,34(2):73-78
采用FINE/Turbo软件包,对一个四级轴流空气涡轮两种转速下的不同流量工况进行了全三维数值模拟,与实验数据进行了涡轮效率、压比以及级间参数分布的比较。结果表明,计算与实验结果在各种工况下的性能符合良好。本文还对设计流量及小流量工况下透平内的流动情况进行分析和比较,研究这两种典型工况下叶片表面极限流线图谱、间隙流动特征等的差异。分析表明,在小流量工况下,与通道涡对应的分离线住置和展向尺度都与设计工况存在显著差别,动叶顶部间隙涡的再附形式以及叶片压力面极限流线图谱也发生了较大变化。  相似文献   

2.
在燃气轮机涡轮叶片的冷却设计中,气膜孔的流量系数是最关键的参数之一,它会影响气膜的实际冷气流量和气膜冷却效果。使用数值计算方法研究了孔倾斜角、孔复合角、长径比、孔入口圆角、孔出口圆角等几何参数对气膜孔流量系数的影响。提出了一种基于选定基准工况的气膜孔流量系数的关联式,该关联式将这些几何参数的影响考虑在内。与文献中试验数据的对比表明,该关联式精度较高,可以为涡轮叶片冷却设计提供参考。  相似文献   

3.
使用数值计算方法研究了压比、内流马赫数、外流马赫数、吹风比、速度比等气膜冷却设计中常见的气动参数对气膜孔流量系数的影响。基于数值计算结果,提出了一种气膜孔流量系数的计算关联式。与文献中试验数据的对比表明,该关联式精度较高,可以为涡轮叶片冷却设计提供参考。  相似文献   

4.
高低齿汽封与蜂窝汽封及孑L式阻尼汽封密封性能的比较   总被引:1,自引:1,他引:0  
使用商用CFD软件Fluent对高低齿汽封、蜂窝汽封及孔式阻尼汽封进行了三维数值模拟,得到三种汽封在不同压比、轴转速和汽封相对间隙时的密封性能,并将高低齿汽封和蜂窝汽封计算值与试验数据进行了对比.结果表明:高低齿汽封流量系数随压比增大而增大,随转速加快而略有减小,随相对间隙的增大而减小;蜂窝汽封与孔式阻尼汽封的流量系数均随压比增大而减小,随转速加快而略有减小,基本呈直线变化规律,随相对间隙的增大而增大;在相同的条件下,蜂窝汽封的漏汽量比高低齿汽封的漏气量减少10%,而孔式阻尼汽封的漏汽量比蜂窝汽封漏汽量减少6%.  相似文献   

5.
采用数值方法模拟了某涡轮叶尖间隙流动换热特性,分析了射流孔角度和吹风比对间隙泄漏流量、气动效率和气膜冷效的影响。研究结果表明:在叶尖表面注入冷却射流对间隙泄漏流有阻塞作用,且随着射流角度的增加而增大;因此间隙泄漏流量随着射流角度的增加而减小,气动效率随着射流角度增加而增大;同时,叶尖表面气膜冷效随着射流角度的增加而减小。此外,冷却射流的阻塞作用随着吹风比的增加而增大,因此间隙泄漏流量随着吹风比的增加而减小;涡轮气动效率随着吹风比的增加而增大;同时,气膜冷效随着吹风比的增大而增大。  相似文献   

6.
利用数值模拟的方法,研究蜗壳形状对涡轮增压器压气机性能的影响。根据蜗壳成型方法(C_ur~x=const,0≤x≤1),取不同的x经验数值(x=0、0.2、0.4、0.6、0.8、1),建立6个蜗壳模型分别与某叶轮的组合性能进行了计算。得到了设计转速下的流量与整机效率及压比的特性曲线并进行比较。分析了靠近设计工况点的叶轮、扩压器及蜗壳流道内的气体流动特性和压比分布。结果表明:在一定范围内x增大,能使流量增大,效率提高,抑制流动分离。本例中x取0.8时总体性能较优。  相似文献   

7.
基于控制变量法对某跨音速离心压气机进行数值模拟,研究了叶轮尾缘叶间隙改变对其气动性能的影响。仅改变该离心叶轮的尾缘叶顶间隙,在设计转速下进行全三维黏性数值模拟,对相关气动参数进行分析。计算结果表明,相较于小流量工况,尾缘叶顶间隙的改变对离心压气机大流量工况的气动性能影响更大;在设计流量下,离心叶轮的压比、效率与叶轮尾缘出口间隙大小之间具有一定的线性关系,随着叶尖间隙增大,叶轮叶尖泄漏流的强度明显增强,导致叶轮的增压能力下降。  相似文献   

8.
王永峰  祁龙  任兰学 《节能技术》2013,31(4):353-355,366
采用商业软件NUMECA对某型轴流压气机进行了数值计算,采用Spalart-Allamaras湍流模型,运用了多重网格技术以及残差光顺方法缩短计算周期。在额定工况计算的基础上进行了变工况的数值模拟,计算结果与试验曲线进行了对比分析,试验曲线与软件计算的曲线在趋势上是相符的。相同压比下,软件计算的流量偏大,在靠近额定工况点附近,流量偏差3%以内,在远离额定工况点流量偏差5%左右;对于喘振边界点的预测,运用NUMECA进一步提高出口静压可以逼近发散点,此时可以近似认为失速点,再结合NREC计算出的失速点,可以得到相应的喘振边界点。  相似文献   

9.
隔板汽封间隙、叶根径向汽封间隙及枞树型叶根与轮槽间隙三者之间匹配设计对透平级效率及转子推力的大小有显著影响。文章针对某1000 MW高压末三级空气透平试验进行相关研究,保持隔板汽封间隙、动叶根部径向汽封间隙不变的条件下,对枞树型叶根间隙改变前后级性能的变化进行试验分析。试验结果表明,叶根间隙封堵后,透平级效率降低,根部反动度升高,转子推力变大。合理的枞树型叶根间隙的存在有利于提高级性能,汽轮机通流设计时应注意叶根间隙与隔板汽封间隙的优化匹配。  相似文献   

10.
涡轮叶顶间隙内部流动的数值研究   总被引:2,自引:0,他引:2  
动叶叶顶间隙流动是引起涡轮中流动损失的主要原因之一,但由于间隙尺寸较小,且流动方向与叶片转动方向相同,因此很难通过试验测量间隙内部详细的流动及压力分布。通过对"LISA"1.5级轴流涡轮设计工况进行计算,并与试验测量结果进行对比,进而研究间隙内部压力场、流场的分布情况,同时分析间隙高度变化对间隙内部流动的影响。  相似文献   

11.
涡轮叶栅二次流的热线实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李军  苏明 《热能动力工程》2007,22(4):362-366
采用旋转单丝斜热线测量涡轮平面叶栅出口周期性三维流场,借助于Matlab的Lsqnonlin最优化函数对热线测量数据进行最小二乘拟合以求解三维速度平均量。搭建了亚音速叶栅试验风洞,研究在2种不同进口流量和3种不同的叶片高度下,热线测得的叶栅出口瞬态速度场,并分析叶栅出口的二次涡流动情况。通过比较不同的叶栅工况,发现高速进口较低速进口叶栅尾迹明显,二次流强度较大;而较小的叶高下二次流较为剧烈,导致叶栅出口平面内径向流动速度(u)、垂直于出口平面的轴向速度(w)的迅速增大和出口平面内周向流动速度(v)的显著降低。叶高的减小和气动负荷(速度)的增加都会极大地提高叶栅的二次流损失,本质上都归咎于叶栅横向压力梯度的增大。  相似文献   

12.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

13.
借助NUMECA数值仿真软件,以某型燃气轮机的三级透平作为计算模型,对其在冷却气体掺混前后的流场进行了数值模拟。考虑到工质物性的影响,采用了变比热高温燃气作为计算工质。同时,针对燃气轮机透平进口的变工况问题,选取不同的透平进口总压值进行数值计算。结果表明,冷却气体的加入使得级损失增大,每列叶片流道出口速度或相对速度减小,下游叶片进口气流角减小;在三级透平冷气掺混时改变进口总压值,每列叶片流道的进口气流角几乎不变,除第三级动叶的激波损失与尾迹损失增大外,其余叶片流道的能量损失变化不明显。  相似文献   

14.
为研究进口总压畸变条件下涡流发生器对压气机流场的影响,建立单级轴流压气机模型,计算和分析了不同工况下的压气机内部流场.计算结果显示:在进口畸变条件下,压气机流场恶化,性能降低;使用涡流发生器后,可以有效改善静叶叶根附近的流场,控制叶片尾缘分离,降低沿叶高方向的压力波动,从而削弱进口畸变对效率的负面影响,改善出口压力场,...  相似文献   

15.
对一个用于大推力液体火箭发动机氧涡轮泵的复速级涡轮的喷嘴叶栅进行了试验研究,以考察喷嘴叶栅的气动特性,验证喷嘴叶栅的气体设计。该复速级喷嘴叶栅采用先进的后加载流动控制技术,以减弱叶机的二次流损失,对喷嘴叶栅进行了四个进气口流角,三个出口等熵马赫数条件下的平面叶栅吹风试验,测取了型面压力分布,出口气流角以及叶栅损失等重要气动特性参数,试验研究表明氧涡轮的喷嘴叶栅的设计是成功的,具有良好的气动特性,可以有效地应用于液体火箭发动机的涡轮中,本研究也为该类喷雾叶栅的设计提供了有用的实验数据和指导意义的结论。  相似文献   

16.
为提高涡轮效率计算精度,将熵函数法引入到涡轮效率计算过程中,借助变比热法等熵绝热过程基本方程,准确求解涡轮进出口截面理想等熵焓差,进而得到涡轮效率。利用该方法,对某型核心机的变比热涡轮效率进行计算,得到不同因素对涡轮效率的影响规律,并完成敏感性分析。分析结果表明:熵函数法能够将涡轮效率计算误差减小到1%~2%之间;压气机引气量的增加会导致涡轮效率计算值偏高,而压气机出口漏气量越小、高压轴效率越高,涡轮效率计算值越低;压气机出口漏气量对涡轮效率的影响最大,而高压轴效率敏感度最低。  相似文献   

17.
This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E3 aircraft engine with the corresponding experimental data, the κ-ω turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It’s showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations.  相似文献   

18.
研究泥沙磨损有助于降低水轮机磨损,延长水轮机使用寿命。运用Partical两相流模型对高水头多泥沙电站的水轮机全流道内部沙水两相流动进行数值计算,并分别分析转轮进口沿叶高20%、50%、80%流面的流动特性。计算结果表明,压力从固定导叶进口到转轮出口圆周方向的周向性较好,分布合理,最低压力高于空化压力。活动导叶上泥沙相体积分数最高在导叶头部位置,尾部泥沙相体积分数也较高,导叶靠近头部处和导叶尾部泥沙速度最大。转轮叶片各叶高流面泥沙相体积分数均在叶片工作面尾部达到最大,叶片头部和尾部位置泥沙速度均较高。研究结果对水轮机选材、关键磨损部位的预测及防护方案具有指导意义。  相似文献   

19.
建立了开式燃气轮机中冷回热再热(ICRR)循环有限时间热力学模型,导出了循环功率和效率解析式,优化了气流沿通流部分的压降(或低压压气机进口空气质量流率)和中间压比,得到最大功率;并在给定燃油流率的情况下,优化了气流沿通流部分的压降和中间压比,得到最大热效率,进一步在给定低压压气机进口和动力涡轮出口总面积的情况下,优化两者面积分配比,得到双重最大热效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号