首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

2.
In this investigation the role of hydrogen addition in a reverse flow configuration, consisting of both non-premixed and premixed combustion modes, have been examined for the CDC flames. In the non-premixed configuration the air injection port is positioned at combustor exit end while the fuel injection port is positioned on the side so that the fuel is injected in cross-flow with respect to air injection. The thermal intensity of the flames investigated is 85 MW/m3 atm to simulate high thermal intensity gas turbine combustion conditions. The results are presented on the global flame signatures, exhaust emissions, and radical emissions using experiments and flowfield using numerical simulations. Ultra low NOx emissions are found for both the premixed and non-premixed combustion modes. Addition of hydrogen to methane fuel resulted in only a slight increase of NO emission, significant decrease of CO emission and extended the lean operational limit of the combustor.  相似文献   

3.
The present research aims to assess the potential of hydrogen in the form of a supplementary fuel to accelerate combustion chemistry and reduce CO emissions of methane fuelled upward swirl gas turbine combustor. Effects of hydrogen enrichment on flame characteristics and chemical kinetics are analysed using Large Eddy Simulations (LES). Flame visualization is performed and measurements of temperature and emissions at the exit of combustor are reported. For the same energy input, flames are relatively broader and shorter at higher hydrogen concentrations. Augmentation of hydrogen is advantageous in terms of flame velocity, temperature, rate of chemical reactions and CO emissions. Higher flame temperature favours NOx emissions at higher hydrogen content. At a constant volumetric fuel flow, reduction in carbon-generated species is attributed to hydrocarbon substitution and chemical kinetic effects are less. Hydrogen addition increases flame temperature, decreases flame dimensions and reduces CO emissions with marginal increase in NOx emissions.  相似文献   

4.
In order to ascertain the effects of the hydrogen addition and the primary air-fuel ratio on burner performance and emissions, we conduct tests on a commercial atmospheric gas burner using pure methane and a blend of hydrogen/methane. Relevant statistical image features are extracted from a UV–VIS camera equipped with narrow-band optical filters. Radical image results agrees with spectrometric data, showing the relevance of the OH1 intensity radiation coming from the outer non-premixed zone. The double-cone flame structure is evident, showing a growing secondary non-premixed cone as the primary air-fuel ratio is decreased. In addition, the direct relationship found between flame radical imaging features and NOx emissions has been used to develop a predictive model by integrating classification techniques and neural networks. The research confirms UV–VIS chemiluminescence imaging techniques as powerful tools aimed at combustion monitoring, with huge prospects of being integrated within advanced emission control techniques for commercial burners.  相似文献   

5.
The potential of partial ammonia substitution to improve the safety of hydrogen use was evaluated computationally, using counterflow nonpremixed ammonia/hydrogen/air flames at normal temperature and pressure. The ammonia-substituted hydrogen/air flames were considered using a recent kinetic mechanism and a statistical narrow-band radiation model for a wide range of flame strain rates and the extent of ammonia substitution. The effects of ammonia substitution on the extinction limits and structure, including nitrogen oxide (NOx) and nitrous oxide (N2O) emissions, of nonpremixed hydrogen/air flames were investigated. Results show reduction of the high-stretch extinction (i.e., blow-off) limits, the maximum flame temperature and the concentration of light radicals (e.g., H and OH) with ammonia substitution in hydrogen/air flames, supporting the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use in nonpremixed hydrogen/air flames. For high-stretched flames, however, NOx and N2O emissions substantially increase with ammonia substitution even though ammonia substitution reduces flame temperature, implying that chemical effects (rather than thermal effects) of ammonia substitution on flame structure are dominant. Radiation effects on the extinction limits and flame structure are not remarkable particularly for high-stretched flames.  相似文献   

6.
In order to evaluate the potential of burning and reforming ammonia as a carbon-free fuel in production of hydrogen, fundamental unstretched laminar burning velocities, and flame response to stretch (represented by the Markstein number) for laminar premixed hydrogen-added ammonia/air flames were studied both experimentally and computationally. Freely (outwardly)-propagating spherical laminar premixed flames at normal temperature and pressure were considered for a wide range of global fuel-equivalence ratios, flame stretch rates (represented by the Karlovitz number) and the extent of hydrogen substitution. Results show the substantial increase of laminar burning velocities with hydrogen substitution, particularly under fuel-rich conditions. Also, predicted flame structures show that the hydrogen substitution enhances nitrogen oxide (NOx) and nitrous oxide (N2O) formation. At fuel-rich conditions, however, the amount of NOx and N2O emissions and the extent of the increase with the hydrogen substitution are much lower than those under fuel-lean conditions. These observations support the potential of hydrogen as an additive for improving the burning performance with low NOx and N2O emissions in fuel-rich ammonia/air flames and hence the potential of using ammonia as a clean fuel. Increasing the amount of added hydrogen tends to enhance flame sensitivity to stretch.  相似文献   

7.
Ammonia, made up of 17.8% hydrogen, has attracted a lot of attention in combustion community due to its zero carbon emission as a fuel in gas turbines. However, ammonia combustion still faces some challenges including the weak combustion and sharp NOx emissions which discourage its application. It was demonstrated that the combustion intensity of ammonia/air flame can be enhanced through adding active fuels like methane and hydrogen, while the NOx emission issue will emerge in the meantime. This study investigates regulation effect of methane and hydrogen on the emission characteristics of ammonia/air flame in a gas turbine combustor. The instantaneous OH profile and global emissions at the combustion chamber outlet are measured with Planar Laser Induced Fluorescence (PLIF) technique and the Fourier Transform Infrared (FTIR), respectively. The flames are also simulated by large eddy simulation to further reveal physical and chemical processes of the emissions formation. Results show that for NH3/air flames, the emissions behavior of the gas turbine combustor is similar to the calculated one-dimensional flames. Moreover, the NOx emissions and the unburned NH3 can be simultaneously controlled to a proper value at the equivalence ratio (φ) of approximate 1.1. The variation of NO and NO2 with φ for NH3/H2/air flames and NH3/CH4/air flames at blending ratio (Zf) of 0.1 are similar to the NH3/air flames, with the peak moving towards rich condition. This indicates that the NH3/air flame can be regulated through adding a small amount of active fuels without increasing the NOx emission level. However, when Zf = 0.3, we observe a clear large NOx emission and CO for NH3/CH4/air flames, indicating H2 is a better choice on the emission control. The LES results show that NO and OH radicals exhibit a general positive correlation. And the temperature plays a secondary role in promoting NOx formation comparing with CH4/air flame.  相似文献   

8.
Hydrogen-blending effects in flame structure and NO emission behaviour are numerically studied with detailed chemistry in methane–air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane–hydrogen through H2 molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a H2–CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviours of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and CO2 emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behaviour considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, combustion and emission characteristics of methane mixed with steam (CH4/H2O) and the products of methane reforming with steam (CO/H2/H2O) were compared. Four fuel compositions were analysed: CH4+H2O, CH4+2H2O, and products of complete methane reforming in these mixtures, respectively. A comparison was carried out through the numerical model created via Ansys Fluent 2019 R2. A combustion process was simulated using a non-premixed combustion model, standard k-ϵ turbulence model and P-1 radiation model. The combustor heat capacity for interrelated fuel compositions was kept constant due to air preheating before combustion. The inlet air temperature was varied to gain a better insight into the combustion behaviour at elevated temperatures. The effect of steam addition on the emission characteristics and flame temperatures was also evaluated. NOx formation was assessed on the outlet of the combustion zone. The obtained results indicate that syngas has a higher combustion temperature than methane (in the same combustor heat capacity) and therefore emitted 27% more NOx comparing to methane combustion. With the air inlet temperature increment, the pollutant concentration difference between the two cases decreased. Steam addition to fuel inlet resulted in lesser emissions both for methane and syngas by 57% and 28%, respectively. In summary, syngas combustion occurred at higher temperature and produced more NOx emissions in all cases considered.  相似文献   

10.
《Energy》2005,30(2-4):313-322
In this study, the effects of hydrogen peroxide on laminar, premixed, methane–air flames at atmospheric pressure and temperature were investigated using CHEMKIN III and GRI 3.5 mechanism. The range of fuel/air equivalence ratio (φ) was varied from 0.6 to 1.2, and the amount of hydrogen peroxide was altered from 0% to 20% volumetric fraction of the methane–hydrogen peroxide (air excluded) mixture. The burning velocity was found to increase with increasing hydrogen peroxide addition, with a relatively larger increase for the fuel-richer mixtures (ΔSu up to 15 cm/s for φ≈1.2). The adiabatic flame temperature rose with hydrogen peroxide addition, and the temperature rise per unit hydrogen peroxide addition was more significantly (ΔT up to 100 K) for the leaner mixtures. For the same mixture stoichiometry, adding hydrogen peroxide also increased CO concentration and NOx emissions somewhat. Accordingly, the benefits of adding hydrogen peroxide to the combustion conditions considered here can be best realized by burning leaner mixtures.  相似文献   

11.
To understand the combustion performance of using hydrogen/methane blended fuels for a micro gas turbine that was originally designed as a natural gas fueled engine, the combustion characteristics of a can combustor has been modeled and the effects of hydrogen addition were investigated. The simulations were performed with three-dimensional compressible k-ε turbulent flow model and presumed probability density function for chemical reaction. The combustion and emission characteristics with a variable volumetric fraction of hydrogen from 0% to 90% were studied. As hydrogen is substituted for methane at a fixed fuel injection velocity, the flame temperatures become higher, but lower fuel flow rate and heat input at higher hydrogen substitution percentages cause a power shortage. To apply the blended fuels at a constant fuel flow rate, the flame temperatures are increased with increasing hydrogen percentages. This will benefit the performance of gas turbine, but the cooling and the NOx emissions are the primary concerns. While fixing a certain heat input to the engine with blended fuels, wider but shorter flames at higher hydrogen percentages are found, but the substantial increase of CO emission indicates a decrease in combustion efficiency. Further modifications including fuel injection and cooling strategies are needed for the micro gas turbine engine with hydrogen/methane blended fuel as an alternative.  相似文献   

12.
NOx emissions in n-heptane/air partially premixed flames (PPFs) in a counter-flow configuration have been investigated. The flame is computed using a detailed mechanism that combines the Held’s mechanism for n-heptane and the Li and Williams’ mechanism for NOx. The combined mechanism contains 54 species and 327 reactions. Based on a detailed analysis, dominant mechanisms responsible for NOx formation and destruction in PPFs are found to be thermal, prompt, and reburn mechanisms. The dominant reactions associated with these mechanisms are also identified. The effects of strain rate (as) and equivalence ratio (φ) on NOx emissions are characterized for conditions in which the flame contains two spatially separated reaction zones; a rich premixed zone on the fuel side and a non-premixed zone on the air side. For most conditions, except for relatively high level of partial premixing, the NO formation rate in the non-premixed zone is significantly higher than that in the rich premixed zone. Within the rich premixed zone, the contribution of thermal NO to total NOx is higher than that of prompt NO, while in the non-premixed zone, the prompt NO is the major contributor. The behavior is related to the transport of acetylene from the rich premixed to the non-premixed zone, and higher concentrations of CH, O, and OH radicals in the latter zone. A notable result in this context is that the existence of CH does not automatically imply that prompt NO will form. The existence of O and OH is also necessary, in addition to CH, to form prompt NO. The relative contributions of thermal and prompt mechanisms to total NOx are generally insensitive to variations in as, but show strong sensitivity to variations in φ. There is a NOx destruction region sandwiched between the rich premixed and the non-premixed reaction zones. The NOx destruction occurs mainly through the reburn mechanism. The NOx emission index (EINOx) is computed as a function of φ and as. These results are qualitatively in accord with previous numerical and experimental results for methane-air PPFs.  相似文献   

13.
Hydrogen is a clean alternative to conventional hydrocarbon fuels, but it is very important to reduce the nitrogen oxides (NOx) emissions generated by hydrogen combustion. The rich-lean combustion or staged combustion is known to reduce NOx emissions from continuous combustion burners such as gas turbines and boilers, and NOx reduction effects have been demonstrated for hydrocarbon fuels. The authors applied rich-lean combustion to a hydrogen gas turbine and showed its NOx reduction effect in previous research. The present study focused on experimental measurements of NO and NO2 emissions from a coaxial rich-lean burner fueled with hydrogen. The results were compared with diffusion combustion and methane rich-lean combustion. Significant reductions in NO and NO2 were achieved with rich-lean combustion. The NO and NO2 reduction effects by rich-lean combustion relative to conventional diffusion combustion were higher with hydrogen than with methane.  相似文献   

14.
15.
Experiments were performed to add hydrogen to liquefied petroleum gas (LPG) and methane (CH4) to compare the emission and impingement heat transfer behaviors of the resultant LPG–H2–air and CH4–H2–air flames. Results show that as the mole fraction of hydrogen in the fuel mixture was increased from 0% to 50% at equivalence ratio of 1 and Reynolds number of 1500 for both flames, there is an increase in the laminar burning speed, flame temperature and NOx emission as well as a decrease in the CO emission. Also, as a result of the hydrogen addition and increased flame temperature, impingement heat transfer is enhanced. Comparison shows a more significant change in the laminar burning speed, temperature and CO/NOx emissions in the CH4 flames, indicating a stronger effect of hydrogen addition on a lighter hydrocarbon fuel. Comparison also shows that the CH4 flame at α = 0% has even better heat transfer than the LPG flame at α = 50%, because the longer CH4 flame configures a wider wall jet layer, which significantly increases the integrated heat transfer rate.  相似文献   

16.
The objective of this work is to investigate numerically the turbulent non‐premixed hydrogen (H2) and hydrogen–hydrocarbon flames in a small burner. Numerical studies using Fluent code were carried out for air‐staged and non‐staged cases. The effects of fuel composition from pure hydrogen to natural gas (100%H2, 70%H2+30%CH4, 10%H2+90%CH4, and 100%CH4) were also investigated. The predictions are validated and compared against the experimental results previously obtained and results from the literature. Turbulent diffusion flames are investigated numerically using a finite volume method for the solution of the conservation equations and reaction equations governing the problem. Although, three different turbulence models were tested, the standard kε model was used for the modelling of the turbulence phenomena in the burner. The temperature and major pollutant concentrations (CO and NOx) distributions are in good agreement with the existing experimental results. Air staging causes rich and lean combustion regions thus lower NOx emissions through the combustor exit. Blending hydrogen with methane causes considerable reduction in temperature levels and thus NO emissions. Increasing the mixture ratio from stoichiometric to leaner mixtures also decreases the temperature and thus NO emissions. Hydrogen may be considered a good alternative fuel for burners, as its use reduces the emission of pollutants, and as it is a renewable synthetic fuel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In order to evaluate the potential of partial ammonia substitution to improve the safety of hydrogen use and the effects on the performance of internal combustion engines, the propagation, development of surface cellular instability and nitrogen oxide (NOx) and nitrous oxide (N2O) emissions of spark-ignited spherical laminar premixed ammonia/hydrogen/air flames were studied experimentally and computationally. With ammonia being the substituent, the fundamental unstretched laminar burning velocities and Markstein numbers, the propensity of cell formation and the associated flame structure were determined. Results show substantial reduction of laminar burning velocities with ammonia substitution in hydrogen/air flames, similar to hydrocarbon (e.g., methane with a similar molecular weight to ammonia) substitution. In all cases, ammonia substitution enhances the NOx and N2O formation. At fuel-rich conditions, however, the amount of NOx emissions increases and then decreases with ammonia substitution and the increased amount of NOx and N2O emissions with ammonia substitution is much lower than that under fuel-lean conditions. These observations support the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use with low NOx and N2O emissions in fuel-rich hydrogen/air flames. The potential of ammonia as a suppressant of both preferential-diffusional and hydrodynamic cellular instabilities in hydrogen/air flames was also found particularly for fuel-lean conditions, different from methane substitution. However, it should be noted that the use of ammonia also imposes considerable technological challenges and public concerns, particularly those associated with toxicity and the specific properties such as high reactivity with container materials and water, which should be completely resolved.  相似文献   

18.
The use of fossil fuel is expected to increase significantly by midcentury because of the large rise in the world energy demand despite the effective integration of renewable energies in the energy production sector. This increase, alongside with the development of stricter emission regulations, forced the manufacturers of combustion systems, especially gas turbines, to develop novel combustion techniques for the control of NOx and CO2 emissions, the latter being a greenhouse gas responsible for more than 60% to the global warming problem. The present review addresses different burner designs and combustion techniques for clean power production in gas turbines. Combustion and emission characteristics, flame instabilities, and solution techniques are presented, such as lean premixed air‐fuel (LPM) and premixed oxy‐fuel combustion techniques, and the combustor performance is compared for both cases. The fuel flexibility approach is also reviewed, as one of the combustion techniques for controlling emissions and reducing flame instabilities, focusing on the hydrogen‐enrichment and the integrated fuel‐flexible premixed oxy‐combustion approaches. State‐of‐the‐art burner designs for gas turbine combustion applications are reviewed in this study, including stagnation point reverse flow (SPRF) burner, dry low NOx (DLN) and dry low‐emission (DLE) burners, EnVironmental burners (including EV, AEV, and SEV burners), perforated plate (PP) burner, and micromixer (MM) burner. Special emphasis is made on the MM combustor technology, as one of the most recent advances in gas turbines for stable premixed flame operation with wide turndown and effective control of NOx emissions. Since the generation of pure oxygen is prerequisite to oxy‐combustion, oxygen‐separation membranes became of immense importance either for air separation for clean oxy‐combustion applications or for conversion/splitting of the effluent CO2 into useful chemical and energy products. The different carbon‐capture technologies, along with the most recent carbon‐utilization approaches towards CO2 emissions control, are also reviewed.  相似文献   

19.
Measurements of temperature and major species concentrations, based on the simultaneous line-imaged Raman/Rayleigh/CO-LIF technique, are reported for piloted jet flames of CH4/H2 fuel with varying amounts of partial premixing with air (jet equivalence ratios of ?j = 3.2, 2.5, 2.1 corresponding to stoichiometric mixture fraction values of ξst = 0.35, 0.43, 0.50, respectively) and varying degrees of localized extinction. Each jet flame is operated at a fixed and relatively high exit Reynolds number (60,000 or 67,000), and the probability of localized extinction is increased in several steps by progressively decreasing the flow rate of the pilot flame. Dimensions of the piloted burner, originally developed at Sydney University, are the same as for previous studies. The present measurements complement previous results from piloted CH4/air jet flames as targets for combustion model calculations by extending to higher Reynolds number, including more steps in the progression of each flame from a fully burning state to a flame with high probability of local extinction, and adding the degree of partial premixing as an experimental parameter. Local extinction in these flames occurs close to the nozzle near a downstream location of four times the jet exit diameter. Consequently, these data provide the additional modeling challenge of accurately representing the initial development of the reacting jet and the near-field mixing processes.  相似文献   

20.
The utilization of hydrogen as a fuel in free jet burners faces particular challenges due to its special combustion properties. The high laminar and turbulent flame velocities may lead to issues in flame stability and operational safety in premixed and partially premixed burners. Additionally, a high adiabatic combustion temperature favors the formation of thermal nitric oxides (NO). This study presents the development and optimization of a partially premixed hydrogen burner with low emissions of nitric oxides. The single-nozzle burner features a very short premixing duct and a simple geometric design. In a first development step, the design of the burner is optimized by numerical investigation (Star CCM+) of mixture formation, which is improved by geometric changes of the nozzle. The impact of geometric optimization and of humidification of the combustion air on NOx emissions is then investigated experimentally. The hydrogen flame is detected with an infrared camera to evaluate the flame stability for different burner configurations. The improved mixture formation by geometric optimization avoids temperature peaks and leads to a noticeable reduction in NOx emissions for equivalence ratios below 0.85. The experimental investigations also show that NOx emissions decrease with increasing relative humidity of combustion air. This single-nozzle forms the basis for multi-nozzle burners, where the desired output power can flexibly be adjusted by the number of single nozzles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号