首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This article examines the additional profit that can be achieved with the integrated operation of an on-site electrolyser, a hydrogen tank, a photovoltaic system, and a wind power plant based on Hungarian data from 2019. The results of the optimisation show that the system economically reduces the volatility of weather-dependent renewable production, so there is a promising demand-side management potential in coordination. We found that the operating profit is highest in April at EUR 19,416, 18,932 in July, and lowest at EUR 17,075 in January. The production curve of photovoltaic capacities is better matched to fuel demand, so increasing the share of solar energy results in lower balancing activity but higher profits. Increasing the size of the hydrogen storage and electrolyser, with constant hydrogen demand and prices, will cause a convergent increase in profits, however above a 10 kg storage capacity or 350 kW electrolyser capacity there is no substantial profit increase. In the case of the economically optimal asset size, there is a slight competition between the electricity market and the hydrogen distribution activity. The choice between the two activities depends on current electricity and hydrogen prices and the cost of unmet hydrogen demand.  相似文献   

2.
In this paper, the hybrid concept to use renewable electricity to produce hydrogen with an electrolyser in combination with a battery is introduced and analysed. This hybrid system opens the possibility to optimise operation and to increase operation times of the system and thus to improve the techno-economic performance. To analyse the performance, a model has been developed, which designs and operates a single or hybrid power-to-gas system in a cost optimal manner. The underlying method is a mixed integer linear programming (MILP) approach, which minimises total system costs. The cost optimisation modelling is performed by a case study for a hybrid electrolyser/battery system directly coupled with a large PV power plant without grid connection. The results show, that batteries can support electrolyser operation in a reasonable way. This is however associated with higher hydrogen production costs and not competitive compared to the installation of additional electrolyser capacity or curtailment of electricity.  相似文献   

3.
The possible reduction of the hydrogen production cost when operating alkaline electrolysers in a discontinuous way, in order to benefit from low electricity prices, is investigated. Beside the insights about the electricity market (prices do not correlate the demand; they are related to the supply-and-demand hardness), advances in modelling discontinuous operation are proposed. An optimum production cost is found that induces a profit of 4%, with regard to a plant that would work continuously. Specific attention should be given to related overcosts: additional degradation due to frequent transitions from the minimum electrolyser load to the nominal one, higher maintenance needs, and hydrogen storage costs. Such an operating mode would also greatly benefit from a reduction of the electrolyser prices. However, the state-of-the-art as regards the electrolyser minimum loads and transition time appears satisfactory.  相似文献   

4.
A comparison is made between the ambient and conventional temperature alkaline electrolysers in terms of operational system, voltage efficiency and corrosion rates. The capital, operational and maintenance costs are reduced by reducing auxiliary equipment as well as auxiliary utilities in the ambient temperature alkaline electrolyser. Also, since auxiliary electricity consumption is reduced, the alkaline electrolyser is capable for dynamic, continuous and fast-response operation with renewable energy sources. The ambient temperature alkaline electrolyser is capable for wider operational range and faster response time when powered by wind energy sources. Although the voltage efficiency for hydrogen production is increased by about 12% at the conventional operating temperature, corrosion rate of the electrode is increased by a factor of about 6.3. The voltage efficiency for hydrogen production, however, is increased by about 12% by employing electrocatalyst in the ambient temperature alkaline electrolyser, and there is benefit of enhancing lifetime durability of the electrode as well as cell components at relatively lower operating temperature.  相似文献   

5.
In a renewable-regenerative electrolyser/fuel-cell system, the electrolyser performs the critical function of converting excess renewable input energy into hydrogen. Electrolyser operation on time scales and duty cycles that are relevant to common renewable resources (e.g., wind and solar) were probed using an experimental residential-scale system. Experimental results indicate that the electrolyser's transient characteristics have a significant impact on the efficiency of the conversion process. Two key findings are presented. First, a reduction in electrolyser hydrogen production, relative to steady-state levels, is observed due to the thermal transient and time-dependent decay in current draw. These time-dependent aspects are typically not addressed in the theoretical models proposed to date for electrolyser operation. Second, it was found that maintaining a minimum electrolyser current is critical to avoid performance decline induced by dynamic operation. The requirement for a minimum operating current (and therefore minimum power input) places constraints on the common operating methodology for renewable-regenerative systems.  相似文献   

6.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

7.
The aim of this work is to analyse the price of renewable hydrogen production in a stand-alone photovoltaic plant. The energy studied herein is generated in a photovoltaic plant. Two dependent parameters that directly affect the price of hydrogen are analysed in detail: the price of the electricity needed to carry out its production process, and the utilisation rate of the connected electrolyser. To this end, a photovoltaic plant is dimensioned with the help of the PVsyst simulator, by means of which the hourly generation curves are obtained. A variable power electrolyser is employed to study its performance according to these photovoltaic production curves. Furthermore, the system is studied by introducing batteries capable of storing the energy left over during the day and of supplying the electrolyser when the photovoltaic power is insufficient. The selling prices calculated in the various scenarios in terms of efficiency and electricity cost are calculated. The significance of a combined analysis of these two parameters and their real impact on the final price of hydrogen is also analysed. This article aims to analyse the price of green hydrogen produced through an isolated photovoltaic system. When the hourly production is evaluated, differences are found with respect to global production that justify the importance of the variables analysed herein, which could not be determined in any other way. The behaviour of isolated production and its effects are discussed.  相似文献   

8.
Hydrogen will become a dominant energy carrier in the future and the efficiency and lifetime cost of its production through water electrolysis is a major research focus. Alongside efforts to offer optimum solutions through plant design and sizing, it is also necessary to develop a flexible virtualised replica of renewable hydrogen plants, that not only models compatibility with the “plug-and-play” nature of many facilities, but that also identifies key elements for optimisation of system operation. This study presents a model for a renewable hydrogen production plant based on real-time historical and present-day datasets of PV connected to a virtualised grid-connected AC microgrid comprising different technologies of batteries, electrolysers, and fuel cells. Mathematical models for each technology were developed from chemical and physical metrics of the plant. The virtualised replica is the first step toward the implementation of a digital twin of the system, and accurate validation of the system behaviour when updated with real-time data. As a case study, a solar hydrogen pilot plant consisting of a 60 kW Solar PV, a 40 kW PEM electrolyser, a 15 kW LIB battery and a 5 kW PEM fuel cell were simulated and analysed. Two effective operational factors on the plant's performance are defined: (i) electrolyser power settings to determine appropriate hydrogen production over twilight periods and/or overnight and (ii) a user-defined minimum threshold for battery state of charge to prevent charge depletion overnight if the electrolyser load is higher than its capacity. The objective of this modelling is to maximise hydrogen yield while both loss of power supply probability (LPSP) and microgrid excess power are minimised. This analysis determined: (i) a hydrogen yield of 38–39% from solar DC energy to hydrogen energy produced, (ii) an LPSP <2.6 × 10?4 and (iii) < 2% renewable energy lost to the grid as excess electricity for the case study.  相似文献   

9.
In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.  相似文献   

10.
The work concerns the optimisation of hydrogen production by electrolysis using renewable energy resources. To achieve this aim, the techno-economic analysis was dedicated to a system composed of PV panels and an electrolyser, including all associated technology such as the chopper circuit1. The first step was to complete a LabVIEW simulation program which was able to reproduce a photovoltaic (PV) plant connected to the alkaline electrolyser. The virtual instrument was developed on the basis of the models of incident radiation, PV cells and electrolyser. After the indication of PV cell type and number, tilt of all panels, number of strings2, latitude and main characteristics of the electrolyser (e.g. nominal power, number of electrolytic cells, working temperature and pressure), the program computes the hydrogen produced, the electrolyser running hours and other data, for a chosen period of the year.Differently tilted photovoltaic panels were considered either directly coupled with the electrolyser or connected via a DC converter between the two systems.The simulation program, called “RenHydrogen”, provides a qualitative calculation of the hydrogen production during the whole year, comparing different technological options and leading to the techno-economic optimisation of the PV-electrolysis system.  相似文献   

11.
针对利用风电制氢导致电解槽间歇式运行的问题,提出了考虑制氢效率特性的风氢系统容量配置优化方法。首先研究了电解槽的制氢效率特性,评估电解槽的最优工作区间;在此基础上,采取电网辅助购电策略,维持电解槽的最优运行;考虑售电收益、售氢收益、投资运维成本和弃风成本,以风氢系统联合收益最大化为目标,计及风氢系统稳定运行约束和风电出力爬坡约束,合理地分配风电上网功率和制氢功率。文章联合风电外送输电工程进行了风氢系统容量配置优化,为风氢系统的容量优化提供新思路。  相似文献   

12.
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source, resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser, using the abondand water resources, which are covering around ? of the Earth's surface. Electrolysers, however, require high-quality water, with conductivity in the range of 0.1–1 μS/cm. In January 2018, there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater, with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser, by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation, using renewable resources such as photovoltaic (PV) devices, wind turbines, as well as electricity from the grid was assessed, considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore, meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources, under the assumption of a nominal discount rate, inflation rate, project lifetime, and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro, and the main findings being as follows:The cost of producing water with quality required by the electrolyser is low, compared with the cost of electricity for operation of the electrolyser, and therefore has little effect on the total cost of hydrogen production (less than 1%).The optimal solution was shown to be electricity from the grid, which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.Grid based electricity resulted in the lowest hydrogen production cost, even when costs for CO2 emissions in Norway, that will start to apply in 2025 was considered, being approximately US$7.7/kg H2.From economical point of view, wind energy was found to be a more economical than solar.  相似文献   

13.
The commercial hydrogen production by water electrolysis is limited by the high cost of electricity. The production cost can be minimized, if the cell module is operated with the minimum voltage at maximum current density. In the present study, porous nickel electrodes were developed indigenously on an engineering scale and used in an advanced zero gap filter press type bipolar electrolyser to minimize the cell voltage. As the cell voltage–current density characteristic of the cell module is unique feature of its design and the operating parameters, the polarization experiments were carried out using this cell module and the cell voltage–current density characteristics were generated at different operating temperatures. Further, the system is modelled for its electrochemical performance and the parameters accounting for different losses such as Ohmic and activation over potential, were estimated at different temperatures. These different parameters were compared with the data existing in literature and based on the analysis, the present cell module is found to be superior to the existing commercial electrolyzers in terms of energy efficiency.  相似文献   

14.
An integrated system for the production of hydrogen by gasification of biomass and electrolysis of water has been designed and cost estimated. The electrolyser provides part of the hydrogen product as well as the oxygen required for the oxygen blown gasifier. The production cost was estimated to 39 SEK/kg H2 at an annual production rate of 15?000 ton, assuming 10% interest rate and an economic lifetime of 15 years. Employing gasification only to produce the same amount of hydrogen, leads to a cost figure of 37 SEK/kg H2, and for an electrolyser only a production cost of 41 SEK/kg H2. The distribution of capital and operating cost is quite different for the three options and a sensitivity analyses was performed for all of these. However, the lowest cost hydrogen produced with either method is at least twice as expensive as hydrogen from natural gas steam reforming.  相似文献   

15.
Thermochemical or hybrid cycles powered by concentrated solar energy are a very promising way to produce an effective clean hydrogen through the water splitting, in terms of greenhouse gas (GHG) emissions and power production sustainability. SOL2HY2 is an European project focused on this goal. It deepens the so-called HyS process in a closed or partially open version using a proper SO2 depolarized electrolyser, and moreover, it investigates key materials and process solutions, along the entire production chain. However, the identification of the best solution to obtain a suitable hydrogen in terms of cost, efficiency, availability of energy and material, sharing of renewable energy source, continuity of operation in different locations and plant sizes, poses many challenges in terms of flexibility and complexity of the system. In fact, it involves various chemical equipment, different solar and thermal storage technologies, and variable operative conditions with different reaction temperatures and mixture concentrations. Hence it arises the importance to have a tool for the investigation of this system.In this paper, data analysis and multi-objective techniques are used to study and optimize the process under consideration. Several mathematical methods have been exploited to make the best use of the available data, such as Design of Experiments techniques, meta-modeling strategies and genetic algorithms. All these methods have been implemented in the open source environments Scilab and R.  相似文献   

16.
Sustainable energy demand drives innovation in energy production. Electrolysis of water can produce carbon-free hydrogen from renewable sources. This paper presents a bibliometric analysis of recent and highly referenced research on hydrogen electrolysers utilising the Scopus database to shed insight into future trends and applications. It has been discovered that the most frequently published type of study for top-ranked papers is the formulation of problems and simulations (38.3%), followed by a study of the state-of-the-art technology assessment (32.5%), laboratory research, design, and performance evaluation (24.2%), and reviews (5%). In general, 33.33% of articles focused on controlling hydrogen electrolyser efficiency. This study used different case studies from the global literature to conduct a complete evaluation of the electrolyser statistical analysis of the present state of the art, models or modes of operation, key challenges, outstanding issues, and future research. This evaluation will aid researchers in building a commercially successful hydrogen electrolyser.  相似文献   

17.
In this work, an electrical equivalent model for a proton exchange membrane (PEM) electrolyser has been developed. Through experimental analysis, the input current–voltage (IV) characteristic for a single PEM electrolyser cell has been modelled under steady-state conditions. It has been developed by using electrical equivalent circuit topology in which the useful power conversion and losses have been taken into account. Electrolytic hydrogen production rates of PEM electrolyser cell have been calculated with respect to the input current and power. The developed model has been tested with experiments results at the nominal operating temperature. The experimental results have been verified with the developed model results and the relative errors between them are around 1–2%. It has been observed that the electrolytic hydrogen production rate increases with the input current in a linear fashion. But the variation of electrolytic hydrogen production rate with the input electrical power is non-linear (i.e. logarithmic). These characteristics are verified by using the developed electrical equivalent model of PEM electrolyser cell. The parameters of the developed model can also be defined by taking into account of temperature and pressure effects. The equivalent electrical model of PEM electrolyser is very useful for analysing the electrical energy system behaviour in which the energy is stored in the form of electrolytic hydrogen.  相似文献   

18.
Over the last few years, hydrogen technologies have established themselves as key enablers in the medium and long-term development of a new energy model that offers greater sustainability and independence than the present-day one. In this respect, the integration of water electrolysis with renewable energy-based systems can play an important part in the large-scale production of sustainable hydrogen. This paper reports on the complete experimental characterisation of a 1 Nm3 h−1 alkaline water electrolyser located in the Public University of Navarre (UPNa). Specifically, a study was made of the electrical performance, hydrogen production rate, purity of the gases generated and energy efficiency, for a range of operating currents (40–120 A), temperatures (35–65 °C) and pressures (5–25 bar). Additionally, an experimental study was conducted on the electrolyser operation under conditions that are characteristic of a stand-alone wind power and PV-based renewable energy system, installed at the UPNa. The results obtained for the wind power and PV emulations showed that the electrolyser performed correctly, with regard to balance of plant and its principal electrochemical characteristics. Furthermore, the mean energy efficiency of the electrolyser was 77.7% for the wind power emulation, and 78.6% for the PV emulation on a day with stable irradiance, and 78.1% on a day with highly variable irradiance (day with scattered clouds).  相似文献   

19.
Electric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h−1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its IV curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m−3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.  相似文献   

20.
This review presents the power-to-gas concept, particularly with hydrogen, from renewable energy sources to end-use applications in various sectors, ranging from transportation to natural gas distribution networks. The paper includes an overview of the leading related studies for comparative evaluation. Due to the intermittent/fluctuating phenomena of most renewables, power-to-hydrogen appears to be a promising option to offset any mismatch between demand and supply. It is a novel concept to increase the renewability of fuels and reach a sustainable energy system for future transportation, power and thermal process sectors. Comparisons of different hydrogen production methods fed by several energy sources are made regarding environmental impact, cost and efficiency. The present results show that hydrogen production (with power-to-hydrogen concept) via polymer electrolyte membrane electrolyser has lower environmental effects than other traditional methods, such as coal gasification and reforming and steam methane reforming. The geothermal energy-based system has the lowest levelized cost of electricity during hydrogen production, while natural gas has the highest value. The best option for the plant efficiency is found for high-temperature steam electrolysis fed from biogas, while the lowest efficiency value belongs to polymer electrolyte membrane electrolyser driven by solar photovoltaics, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号