首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   

2.
The possible reduction of the hydrogen production cost when operating alkaline electrolysers in a discontinuous way, in order to benefit from low electricity prices, is investigated. Beside the insights about the electricity market (prices do not correlate the demand; they are related to the supply-and-demand hardness), advances in modelling discontinuous operation are proposed. An optimum production cost is found that induces a profit of 4%, with regard to a plant that would work continuously. Specific attention should be given to related overcosts: additional degradation due to frequent transitions from the minimum electrolyser load to the nominal one, higher maintenance needs, and hydrogen storage costs. Such an operating mode would also greatly benefit from a reduction of the electrolyser prices. However, the state-of-the-art as regards the electrolyser minimum loads and transition time appears satisfactory.  相似文献   

3.
The developments of battery storage technology together with photovoltaic (PV) roof-top systems might lead to far-reaching changes in the electricity demand structures and flexibility of households. The implications are supposed to affect the generation mix of utilities, distribution grid utilization, and electricity price. Using a techno-economic optimization model of a household system, we endogenously dimension PV system and stationary battery storage (SBS). The results of the reference scenario show positive net present values (NPV) for PV systems of approx. 500–1,800 EUR/kWp and NPV for SBS of approx. 150–500 EUR/kWh. Main influences are the demand of the households, self-consumption rates, investment costs, and electricity prices. We integrate electric vehicles (EV) with different charging strategies and find increasing NPV of the PV system and self-consumption of approx. 70%. With further declining system prices for solar energy storage and increasing electricity prices, PV systems and SBS can be profitable in Germany from 2018 on even without a guaranteed feed-in tariff or subsidies. Grid utilization substantially changes by households with EV and PV-SBS. We discuss effects of different incentives and electricity tariff options (e. g. load limits or additional demand charges). Concluding, solar energy storage systems will bring substantial changes to electricity sales.  相似文献   

4.
Acceleration of the hydrogen economy is being observed on a global scale. It is considered to be a potential solution to the problems with high-carbon energy, industry, and transport systems. The potential of production, cost-competitiveness, and opportunities are currently being investigated to provide insights to policymakers, researchers, and industry. In this context, this study makes a quantitative assessment of the competitiveness of hydrogen storage compared to Li-ion batteries based on price arbitrage in the day-ahead market. Two scenarios that form the boundaries of rational decision-making regarding the charging and discharging of energy storage are considered. The first one assumes the charging and discharging of energy storage facilities over the same hours throughout the entire year. The selection of these hours is based on historical electricity prices. The second scenario assumes charge and discharge during historical daily minimum and maximum prices. The results show that NPV is below zero for both technologies when current values of investment expenditure are assumed. The outcomes of sensitivity analysis indicate that only a substantial reduction of investment expenditure could improve the financial results of the Li-ion batteries (NPV>0). The investigation also shows that even simplified charge and discharge over the same hours allows one to achieve 47% (hydrogen) and 70% (Li-ion batteries) of the maximum operating profit when the perfect foresight of prices is applied. In each case, NPV for Li-ion technology is significantly higher than for hydrogen; for example, for a 1 MWh and 1 MWout storage system, NPV is EUR -4.85 million in the case of hydrogen and with Li-ion NPV is EUR -0.23 million. Consequently, the application of expensive decision support systems in small systems may be unprofitable. The increase in profits may not cover the cost of developing and introducing such a system.  相似文献   

5.
In recent years, hybrid photovoltaic–fuel cell energy systems have been popular as energy production systems for different applications. A typical solar-hydrogen system can be modeled the electricity supplied by PV panels is used to meet the demand directly to the maximum extent possible. If there is any surplus PV power over demand, and capacity left in the tank for accommodating additional hydrogen, this surplus power is supplied to the electrolyser to produce hydrogen for storage. When the output of the PV array is not sufficient to supply the demand, the fuel cell draws on hydrogen from storage and produces electricity to meet the supply deficit.  相似文献   

6.
The increasing urgency with which climate change must be addressed has led to an unprecedented level of interest in hydrogen as a clean energy carrier. Much of the analysis of hydrogen until this point has focused predominantly on hydrogen production. This paper aims to address this by developing a flexible techno-economic analysis (TEA) tool that can be used to evaluate the potential of future scenarios where hydrogen is produced, stored, and distributed within a region. The tool takes a full year of hourly data for renewables availability and dispatch down (the sum of curtailment and constraint), wholesale electricity market prices, and hydrogen demand, as well as other user-defined inputs, and sizes electrolyser capacity in order to minimise cost. The model is applied to a number of case studies on the island of Ireland, which includes Ireland and Northern Ireland. For the scenarios analysed, the overall LCOH ranges from €2.75–3.95/kgH2. Higher costs for scenarios without access to geological storage indicate the importance of cost-effective storage to allow flexible hydrogen production to reduce electricity costs whilst consistently meeting a set demand.  相似文献   

7.
The aim of this work is to analyse the price of renewable hydrogen production in a stand-alone photovoltaic plant. The energy studied herein is generated in a photovoltaic plant. Two dependent parameters that directly affect the price of hydrogen are analysed in detail: the price of the electricity needed to carry out its production process, and the utilisation rate of the connected electrolyser. To this end, a photovoltaic plant is dimensioned with the help of the PVsyst simulator, by means of which the hourly generation curves are obtained. A variable power electrolyser is employed to study its performance according to these photovoltaic production curves. Furthermore, the system is studied by introducing batteries capable of storing the energy left over during the day and of supplying the electrolyser when the photovoltaic power is insufficient. The selling prices calculated in the various scenarios in terms of efficiency and electricity cost are calculated. The significance of a combined analysis of these two parameters and their real impact on the final price of hydrogen is also analysed. This article aims to analyse the price of green hydrogen produced through an isolated photovoltaic system. When the hourly production is evaluated, differences are found with respect to global production that justify the importance of the variables analysed herein, which could not be determined in any other way. The behaviour of isolated production and its effects are discussed.  相似文献   

8.
Solar hydrogen production by coupling of pressurized high temperature electrolyser with concentrated solar tower technology is studied. As the high temperature electrolyser requires constant temperature conditions, the focus is made on a molten salt solar tower due to its high storage capacity. A flowsheet was developed and simulations were carried out with Aspen Plus 8.4 software for MW-scale hydrogen production plants. The solar part was laid out with HFLCAL software. Two different scenarios were considered: the first concerns the production of 400 kg/d hydrogen corresponding to mobility use (fuel station). The second scenario deals with the production of 4000 kg/d hydrogen for industrial use. The process was analyzed from a thermodynamic point of view by calculating the overall process efficiency and determining the annual production. It was assumed that a fixed hydrogen demand exists in the two cases and it was assessed to which extent this can be supplied by the solar high temperature electrolysis process including thermal storage as well as hydrogen storage. For time periods with a potential over supply of hydrogen, it was considered that the excess energy is sold as electricity to the grid. For time periods where the hydrogen demand cannot be fully supplied, electricity consumption from the grid was considered. It was assessed which solar multiple is appropriate to achieve low consumption of grid electricity and low excess energy. It is shown that the consumption of grid electricity is reduced for increasing solar multiple but the efficiency is also reduced. At a solar multiple of 3.0 an annual solar-to-H2 efficiency greater than 14% is achieved at grid electricity production below 5% for the industrial case (4000 kg/d). In a sensitivity study the paramount importance of electrolyser performance, i.e. efficiency and conversion, is shown.  相似文献   

9.
Nearly 96% of the world's current hydrogen production comes from fossil-fuel-based sources, contributing to global greenhouse gas emissions. Hydrogen is often discussed as a critical lever in decarbonizing future power systems. Producing hydrogen using unsold offshore wind electricity may offer a low-carbon production pathway and emerging business model. This study investigates whether participating in an ancillary service market is cost competitive for offshore wind-based hydrogen production. It also determines the optimal size of a hydrogen electrolyser relative to an offshore wind farm. Two flexibility strategies for offshore wind farms are developed in this study: an optimal bidding strategy into ancillary service markets for offshore wind farms that build hydrogen production facilities and optimal sizing of Power-to-Hydrogen (PtH) facilities at wind farms. Using empirical European power market and wind generation data, the study finds that offshore-wind based hydrogen must participate in ancillary service markets to generate net positive revenues at current levels of wind generation to become cost competitive in Germany. The estimated carbon abatement cost of “green” hydrogen ranges between 187 EUR/tonCO2e and 265 EUR/tonCO2e. Allowing hydrogen producers to receive similar subsidies as offshore wind farms that produce only electricity could facilitate further cost reduction. Utilizing excess and intermittent offshore wind highlights one possible pathway that could achieve increasing returns on greenhouse gas emission reductions due to technological learning in hydrogen production, even under conditions where low power prices make offshore wind less competitive in the European electricity market.  相似文献   

10.
Hydrogen direct reduction has been proposed as a means to decarbonize primary steelmaking. Preferably, the hydrogen necessary for this process is produced via water electrolysis. A downside to electrolysis is the large electricity demand. The electricity cost of water electrolysis may be reduced by using a hydrogen storage to exploit variations in electricity price, i.e., producing more hydrogen when the electricity price is low and vice versa. In this paper we compare two kinds of hydrogen storages in the context of a hydrogen direct reduction process via simulations based on historic Swedish electricity prices: the storage of gaseous hydrogen in an underground lined rock cavern and the storage of hydrogen chemically bound in methanol. We find the methanol-based storages to be economically advantageous to lined rock caverns in several scenarios. The main advantages of methanol-based storage are the low investment cost of storage capacity and the possibility to decouple storage capacity from rate capacity. Nevertheless, no storage option is found to be profitable for historic Swedish electricity prices. For the storages to be profitable, electricity prices must be volatile with relatively frequent high peaks, which has happened rarely in Sweden in recent years. However, such scenarios may become more common with the expected increase of intermittent renewable power in the Swedish electricity system.  相似文献   

11.
The increasing penetration of intermittent renewable sources, fostering power sector decarbonization, calls for the adoption of energy storage systems as an essential mean to improve local electricity exploitation, reducing the impact of distributed power generation on the electric grid. This work compares the use of hydrogen-based Power-to-Power systems, battery systems and hybrid hydrogen-battery systems to supply a constant 1 MWel load with electricity locally generated by a photovoltaic plant. A techno-economic optimization model is set up that optimizes the size and annual operation of the system components (photovoltaic field, electrolyzer, hydrogen storage tanks, fuel cell and batteries) with the objective of minimizing the annual average cost of electricity, while guaranteeing an imposed share of local renewable self-generation. Results show that, with the present values of investment costs and grid electricity prices, the installation of an energy storage system is not economically attractive by itself, whereas the installation of PV panels is beneficial in terms of costs, so that the baseline optimal solution consists of a 4.2 MWp solar field capable to self-generate 33% of the load annually. For imposed shares of self-generation above 40%, decoupling generation and consumption becomes necessary. The use of batteries is slightly less expensive than the use of hydrogen storage systems up to a 92% self-generation rate. Above this threshold, seasonal storage becomes predominant and hybrid storage becomes cheaper than batteries. The sale of excess electricity is always important to support the plant economics, and a sale price reduction sensibly impacts the results. Hydrogen storage becomes more competitive when the need for medium and long terms energy shift increases, e.g. in case of having a cap on the available PV capacity.  相似文献   

12.
The increasing use of renewable power sources for distributed generation (DG) has made the application of storage systems a necessity to ensure the continuous supply. This paper analyzes technically and economically an autonomous sodium hypochlorite plant using a renewable energy source and a hydrogen storage system in the Western Region of Paraguay. In this region, there is abundant underground brackish water to produce industrial and energetic hydrogen. In addition, an isolated photovoltaic (PV) system feeds with electricity an electrolyzer, used for sodium hypochlorite production, and the brackish water and freshwater pumping systems. The hydrogen and fuel cell are used as backup system in the operation of the electrolyzer. Preliminary results show that hydrogen stored during the day can increase hypochlorite production by up to 31%. The PV solar system surplus can supply the demand of an off-grid community near the plant. The results show that the plant's return on investment (ROI) is 7 years.  相似文献   

13.
The work aims to verify the economic feasibility of renewable hybrid systems for hydrogen production and storage in the Brazilian electric power sector. The methodology applied is based on economic cost analyses of the two largest wind and solar photovoltaic plants in the country. As a result, the number of hours of electricity available for hydrogen production directly influences its cost. However, fully dedicated plants to produce green hydrogen have shown economically feasible to the exporter or other sectors, being trading hydrogen is more profitable than transforming it back into power. The model also concludes that wind and solar hybrid systems for hydrogen production and storage are still not economically viable in Brazil. The CAPEX of electrolysers and their operating losses are still very significant. Finally, hydrogen production and storage become economically feasible only from plants operating above 3000 h and for electrolysers with a CAPEX of USD 650/kWe.  相似文献   

14.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   

15.
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source, resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser, using the abondand water resources, which are covering around ? of the Earth's surface. Electrolysers, however, require high-quality water, with conductivity in the range of 0.1–1 μS/cm. In January 2018, there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater, with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser, by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation, using renewable resources such as photovoltaic (PV) devices, wind turbines, as well as electricity from the grid was assessed, considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore, meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources, under the assumption of a nominal discount rate, inflation rate, project lifetime, and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro, and the main findings being as follows:The cost of producing water with quality required by the electrolyser is low, compared with the cost of electricity for operation of the electrolyser, and therefore has little effect on the total cost of hydrogen production (less than 1%).The optimal solution was shown to be electricity from the grid, which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.Grid based electricity resulted in the lowest hydrogen production cost, even when costs for CO2 emissions in Norway, that will start to apply in 2025 was considered, being approximately US$7.7/kg H2.From economical point of view, wind energy was found to be a more economical than solar.  相似文献   

16.
The use of intermittent renewable energy sources for power supply to off-grid electricity consumers depends on energy storage technology to guarantee continuous supply. Potential applications of storage-guaranteed systems range from small installations for remote telecoms, water-pumping and single dwellings, to farms and whole communities for whom grid connection is too expensive or otherwise infeasible, to industrial, military and humanitarian uses. In this paper we explore some of the technical issues surrounding the use of hydrogen storage, in conjunction with a PEM electrolyser and PEM fuel cell, to guarantee electricity supply when the energy source is intermittent, most typically solar photovoltaic. We advocate metal-hydride storage and compare its energy density to that of Li-ion battery storage, concluding that a significantly smaller package is possible with metal-hydride storage. A simple approach to match the output of a photovoltaic array to an electrolyser is presented. The properties required for the metal-hydride storage material to interface the electrolyser to the fuel cell are discussed in detail. It is concluded that relatively conventional Mischmetal-based AB5 alloys are suitable for this application.  相似文献   

17.
Hydrogen demand as a clean energy is one of the new energy challenges in the future. Being a very controlled technology, the water electrolysis is more efficient at high temperature level than at low one. This is because of the use of thermal energy which is less expensive than the use of electricity power to produce the hydrogen; the chemical reaction is more activated in these conditions. In this paper, the feasibility of hydrogen production at high temperature electrolyser, using a hybrid solar resource, thermal energy (parabolic trough concentrators) to produce high temperature, steam water and photovoltaic energy for electricity requirements of the HTE, is presented. The described here-after presented in this document guarantees the production of an important quantity of hydrogen at 900 °C. The production rate depends on geographic position, on climatic conditions and on sun radiation. The optimization of the process is strongly related to what preceded these three parameters. Then, we suggest the set up construction in any region allowing maximum extraction of energy based in our simulation results.  相似文献   

18.
The weather-dependent electricity generation from Renewable Energy Sources (RES), such as solar and wind power, entails that systems for energy storage are becoming progressively more important. Among the different solutions that are being explored, hydrogen is currently considered as a key technology allowing future long-term and large-scale storage of renewable power.Today, hydrogen is mainly produced from fossil fuels, and steam methane reforming (SMR) is the most common route for producing it from natural gas. None of the conventional methods used is GHG-free. The Power-to-Gas concept, based on water electrolysis using electricity coming from renewable sources is the most environmentally clean approach. Given its multiple uses, hydrogen is sold both as a fuel, which can produce electricity through fuel cells, and as a feedstock in several industrial processes. Just the feedstock could be, in the short term, the main market of RES-based hydrogen.In this paper, we present the results obtained from a techno-economic-financial evaluation of a system to produce green hydrogen to be sold as a feedstock for industries and research centres. A system which includes a 200 kW photovoltaic plant and a 180 kW electrolyser, to be located in Messina (Italy), is proposed as a case study. According to the analyses carried out, and taking into account the current development of technologies, it has been found that investment to realise a small-scale PV-based hydrogen production plant can be remunerative.  相似文献   

19.
The involvement of green hydrogen in energy transformation is getting global attention. This assessment examines the hydrogen production and its utilization potential in one of the hydropower-rich regions, Nepal under various demand growth and technology intervention scenarios by developing a power grid model of 52 nodes and 68 transmission lines operating at an hourly time-step. The model incorporates a grid-connected hydrogen storage system as well as charging stations for electric and hydrogen vehicles. The least-costly pathways for power grid expansion at the nodal and provincial levels are identified through optimization. The results show that 32 GW of installed capacity is required to meet domestic electricity demand and 14 GW more hydropower should be exploited to completely decarbonize the transport sector by 2050. For maintaining 50% shares of hydrogen vehicle in the transport sector and meet government electricity export targets, Nepal requires 5.7 GW, 12 GW and 23 GW of the additional electrolyzer, hydrogen storage tanks and storage-based hydropower capacities respectively. For a given electricity demand, introducing hydrogen systems can reduce the capacity requirements of hydro storage by storing surplus power generated from pondage run-of-the-river and run-of-the-river hydropower during the rainy season and using it in the dry season.  相似文献   

20.
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively, different distribution, storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta, CL to the port of Osaka, JP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号