首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来,联邦学习成为解决机器学习中数据孤岛与隐私泄露问题的新思路。联邦学习架构不需要多方共享数据资源,只要参与方在本地数据上训练局部模型,并周期性地将参数上传至服务器来更新全局模型,就可以获得在大规模全局数据上建立的机器学习模型。联邦学习架构具有数据隐私保护的特质,是未来大规模数据机器学习的新方案。然而,该架构的参数交互方式可能导致数据隐私泄露。目前,研究如何加强联邦学习架构中的隐私保护机制已经成为新的热点。从联邦学习中存在的隐私泄露问题出发,探讨了联邦学习中的攻击模型与敏感信息泄露途径,并重点综述了联邦学习中的几类隐私保护技术:以差分隐私为基础的隐私保护技术、以同态加密为基础的隐私保护技术、以安全多方计算(SMC)为基础的隐私保护技术。最后,探讨了联邦学习中隐私保护中的若干关键问题,并展望了未来研究方向。  相似文献   

2.
针对传统的基于机器学习的航班延误预测模型存在隐私风险及数据信息共享不充分导致的数据孤岛问题,提出一种基于纵向联邦学习框架融合改进逻辑回归模型的方法。在不共享本地隐私数据的前提下,利用纵向联邦学习处理不同参与方拥有的垂直分区数据,利用Paillier同态加密技术对模型参数进行加密,解决模型重要参数泄露问题,建立安全的逻辑回归模型。将仿真结果与其它集中式模型范式进行比较,验证了联邦模型在二分类实验中既有效提高了预测准确率又保证了数据隐私安全。为民航相关部门制定战略性业务决策提供了安全有效的依据。  相似文献   

3.
肖雄  唐卓  肖斌  李肯立 《计算机学报》2023,(5):1019-1044
联邦学习作为人工智能领域的新兴技术,它兼顾处理“数据孤岛”和隐私保护问题,将分散的数据方联合起来训练全局模型同时保持每一方的数据留在本地.联邦学习在很大程度上给需要将数据融合处理的数据敏感型应用带来了希望,但它仍然存在一些潜在的隐私泄露隐患和数据安全问题.为了进一步探究基于联邦学习的隐私保护和安全防御技术研究现状,本文对联邦学习的隐私和安全问题在现有最前沿的研究成果上进行了更清晰的分类,并对威胁隐私和安全的手段进行了威胁强度的划分.本文首先介绍了涉及联邦学习隐私和安全问题的威胁根源,并从多个方面罗列了其在联邦学习中的破坏手段及威胁性.其次,本文总结了关于联邦学习隐私和安全问题所面临的挑战.对于隐私保护而言,本文同时分析了包括单个恶意参与方或中央服务器的攻击和多方恶意合谋泄露隐私的场景,并探讨了相应的最先进保护技术.对于安全问题而言,本文着重分析了影响全局模型性能的多种恶意攻击手段,并系统性地阐述了先进的安全防御方案,以帮助规避构建安全的大规模分布式联邦学习计算环境中潜在的风险.同时与其他联邦学习相关综述论文相比,本文还介绍了联邦学习的多方恶意合谋问题,对比分析了现有的联邦安全聚合算法及...  相似文献   

4.
大数据时代,数据安全性和隐私性受到越来越多的关注和重视。联邦学习被视为是一种隐私保护的可行技术,允许从去中心化的数据中训练深度模型。针对电力投资系统中各部门因担心数据隐私信息泄露而带来的数据孤岛和隐私保护问题,提出了一种隐私保护的联邦学习框架,允许各部门自有数据在不出本地的情况下,联合训练模型。首先,提出了联邦学习的架构,支持分布式地训练模型;其次,引入同态加密技术,提出了隐私保护的联邦平均学习流程,在数据隐私保护的情况下,实现联合训练模型;最后,实验结果表明,该框架具有较好的收敛性,而且联合训练得到的模型具有较好的精度。  相似文献   

5.
联邦学习是解决多组织协同训练问题的一种有效手段,但是现有的联邦学习存在不支持用户掉线、模型API泄露敏感信息等问题。文章提出一种面向用户的支持用户掉线的联邦学习数据隐私保护方法,可以在用户掉线和保护的模型参数下训练出一个差分隐私扰动模型。该方法利用联邦学习框架设计了基于深度学习的数据隐私保护模型,主要包含两个执行协议:服务器和用户执行协议。用户在本地训练一个深度模型,在本地模型参数上添加差分隐私扰动,在聚合的参数上添加掉线用户的噪声和,使得联邦学习过程满足(ε,δ)-差分隐私。实验表明,当用户数为50、ε=1时,可以在模型隐私性与可用性之间达到平衡。  相似文献   

6.
随着网络信息技术与互联网的发展,数据的隐私与安全问题亟待解决,联邦学习作为一种新型的分布式隐私保护机器学习技术应运而生。针对在联邦学习过程中存在个人数据信息泄露的隐私安全问题,结合Micali-Rabin随机向量表示技术,基于博弈论提出一种具有隐私保护的高效联邦学习方案。根据博弈论激励机制,构建联邦学习博弈模型,通过设置合适的效用函数和激励机制保证参与者的合理行为偏好,同时结合Micali-Rabin随机向量表示技术设计高效联邦学习方案。基于Pedersen承诺机制实现高效联邦学习的隐私保护,以保证联邦学习各参与者的利益和数据隐私,并且全局达到帕累托最优状态。在数字分类数据集上的实验结果表明,该方案不仅提高联邦学习的通信效率,而且在通信开销和数据精确度之间实现平衡。  相似文献   

7.
随着移动设备自身存储和计算能力的提升,越来越多移动设备在本地进行数据处理,如传感器,智能穿戴设备和车载应用等。当前机器学习技术在计算机视觉,自然语言处理,模式识别等领域取得了巨大成功,然而当前机器学习方法是中心化的,数据中心或者云服务器能够对数据进行访问。联邦学习作为新型的分布式机器学习范式,借助设备本身的存储和计算能力,能够在数据不出本地的情况下进行机器学习中的模型共建,从而保护数据隐私,从而有效解决数据孤岛问题。边缘计算能够在靠近设备端提供计算,存储和网络资源,为高带宽低时延的应用提供基础。在联邦学习训练中,设备数量增加,设备网络情况复杂多变等均为联邦学习中的联合训练上带来了巨大挑战,如设备选择,网络通信开销大等状况。本文首先介绍了边缘计算的基础,以及联邦学习的联合训练流程,通过对联邦学习和边缘计算的融合应用进行分析研究,进一步我们对基于边缘计算的联邦学习做了分析,最后我们对当前的主要挑战以及未来的研究方向做了总结。  相似文献   

8.
随着大数据、云计算等领域的蓬勃发展,重视数据安全与隐私已经成为世界性的趋势,不同团体为保护自身利益和隐私不愿贡献数据,形成了数据孤岛.联邦学习使数据不出本地就可被多方利用,为解决数据碎片化和数据隔离等问题提供了解决思路.然而越来越多研究表明,由谷歌首先提出的联邦学习算法不足以抵抗精心设计的隐私攻击,因此如何进一步加强隐私防护,保护联邦学习场景下的用户数据隐私成为一个重要问题.对近些年来联邦学习隐私攻击与防护领域取得的成果进行了系统总结.首先介绍了联邦学习的定义、特点和分类;然后分析了联邦学习场景下隐私威胁的敌手模型,并根据敌手攻击目标对隐私攻击方法进行了分类和梳理;介绍了联邦学习中的主流隐私防护技术,并比较了各技术在实际应用中的优缺点;分析并总结了6类目前联邦学习的隐私保护方案;最后指出目前联邦学习隐私保护面临的挑战,展望了未来可能的研究方向.  相似文献   

9.
近年来,随着人工智能技术的飞速发展,人们越来越重视数据隐私与安全,世界各国也出台一系列法律法规以保护用户隐私.面对制约人工智能发展的数据孤岛以及数据隐私和安全问题,联邦学习作为一种新型的分布式机器学习技术应运而生.然而,高通信开销问题阻碍着联邦学习的进一步发展,为此,本文提出了基于选择性通信策略的高效联邦学习算法.具体地,该算法基于联邦学习的网络结构特点,采取选择性通信策略,在客户端通过最大均值差异衡量本地模型与全局模型的相关性以过滤相关性较低的本地模型,并在服务器端依据相关性对本地模型进行加权聚合.通过上述操作,所提算法在保证模型快速收敛的同时能够有效减少通信开销.仿真结果表明,与FedAvg算法和FedProx算法相比,所提算法能够在保证准确率的前提下,将通信轮次分别减少54%和60%左右.  相似文献   

10.
为了应对机器学习过程中可能出现的用户隐私问题,联邦学习作为首个无需用户上传真实数据、仅上传模型更新的协作式在线学习解决方案,已经受到人们的广泛关注与研究。然而,它要求用户在本地训练且上传的模型更新中仍可能包含敏感信息,从而带来了新的隐私保护问题。与此同时,必须在用户本地进行完整训练的特点也使得联邦学习过程中的运算与通信开销问题成为一项挑战,亟需人们建立一种轻量化的联邦学习架构体系。出于进一步的隐私需求考虑,文中使用了带有差分隐私机制的联邦学习框架。另外,首次提出了基于Fisher信息矩阵的Dropout机制——FisherDropout,用于对联邦学习过程中在客户端训练产生梯度更新的每个维度进行优化选择,从而极大地节约运算成本、通信成本以及隐私预算,建立了一种兼具隐私性与轻量化优势的联邦学习框架。在真实世界数据集上的大量实验验证了该方案的有效性。实验结果表明,相比其他联邦学习框架,FisherDropout机制在最好的情况下可以节约76.8%~83.6%的通信开销以及23.0%~26.2%的运算开销,在差分隐私保护中隐私性与可用性的均衡方面同样具有突出优势。  相似文献   

11.
梁天恺  曾碧  陈光 《计算机应用》2022,42(12):3651-3662
在强调数据确权以及隐私保护的时代背景下,联邦学习作为一种新的机器学习范式,能够在不暴露各方数据的前提下达到解决数据孤岛以及隐私保护问题的目的。目前,基于联邦学习的建模方法已成为主流并且获得了很好的效果,因此对联邦学习的概念、技术、应用和挑战进行总结与分析具有重要的意义。首先,阐述了机器学习的发展历程以及联邦学习出现的必然性,并给出联邦学习的定义与分类;其次,介绍并分析了目前业界认可的三种联邦学习方法:横向联邦学习、纵向联邦学习和联邦迁移学习;然后,针对联邦学习的隐私保护问题,归纳并总结了目前常见的隐私保护技术;此外,还对联邦学习的现有主流开源框架进行了介绍与对比,同时给出了联邦学习的应用场景;最后,展望了联邦学习所面临的挑战和未来的研究方向。  相似文献   

12.
联邦学习是一种保证数据隐私安全的分布式机器学习方案.与传统的机器学习的可解释性问题类似,如何对联邦学习进行解释是一个新的挑战.文中面向联邦学习方法的分布式与隐私安全性的特性,探讨联邦学习的可视化框架设计.传统的可视化任务需要使用大量的数据,而联邦学习的隐私性决定了其无法获取用户数据.因此,可用的数据主要来自服务器端的训练过程,包括服务器端模型参数和用户训练状态.基于对联邦学习可解释性的挑战的分析,文中综合考虑用户、服务器端和联邦学习模型3个方面设计可视化框架,其包括经典联邦学习模型、数据中心、数据处理和可视分析4个模块.最后,介绍并分析了2个已有的可视化案例,对未来通用的联邦学习可视分析方法提出了展望.  相似文献   

13.
联邦学习是一种隐私保护的分布式机器学习框架,可以让各方参与者在不披露本地数据的前提下共建模型.然而,联邦学习仍然面临拜占庭攻击和用户隐私泄漏等威胁.现有研究结合鲁棒聚合规则和安全计算技术以同时应对上述安全威胁,但是这些方案难以兼顾模型鲁棒性与计算高效性.针对此问题,本文提出一种抗拜占庭攻击的隐私保护联邦学习框架Sec FedDMC,在保护用户数据隐私的条件下实现高效的拜占庭攻击检测与防御.基础方案Fed DMC采用“先降维后聚类”的策略,设计了高效精准的恶意客户端检测方法.此外,该方法利用的随机主成分分析降维技术和K-均值聚类技术主要由线性运算构成,从而优化了算法在安全计算环境中的适用性.针对基础方案存在的用户数据隐私泄露问题,提出了基于安全多方计算技术的隐私增强方案Sec FedDMC.基于轻量级加法秘密分享技术,设计安全的正交三角分解协议和安全的特征分解协议,从而构建双服务器模型下隐私保护的拜占庭鲁棒联邦学习方案,以保护模型训练和拜占庭节点识别过程中的用户隐私.经实验验证,Sec FedDMC在保护用户隐私的前提下,可以高效准确地识别拜占庭攻击节点,具有较好的鲁棒性.其中,本方案与...  相似文献   

14.
随着实时传感器在诸如机场、发电厂、智能工厂和医疗保健系统等各种领域的广泛运用,对多变量时间序列数据的异常检测变得更加重要。然而,目前面临两个关键的挑战。数据机构的敏感数据通常以孤岛的形式存在,这使得在保护隐私安全的前提下难以融合数据,无法训练出高性能的异常检测模型。不同数据机构的数据存在统计异构性,在个性化数据场景下,使用统一的异常检测模型的性能不佳。提出了一种面向多元时序数据的个性化联邦异常检测框架FedPAD(federated personalized anomaly detection)。FedPAD基于联邦学习架构,在保护隐私的前提下进行数据聚合,通过微调构建相对个性化的模型。在NASA航天器数据集上的实验表明,FedPAD能够实现准确和个性化的异常检测,相比于基准方法F1分数平均提高了6.9%。  相似文献   

15.
尹春勇  屈锐 《计算机应用》2023,(4):1160-1168
联邦学习(FL)可以有效保护用户的个人数据不被攻击者获得,而差分隐私(DP)则可以实现FL的隐私增强,解决模型训练参数导致的隐私泄露问题。然而,现有的基于DP的FL方法只关注统一的隐私保护预算,而忽略了用户的个性化隐私需求。针对此问题,提出了一种两阶段的基于个性化差分隐私的联邦学习(PDP-FL)算法。在第一阶段,依据用户的隐私偏好对用户隐私进行分级,并添加满足用户隐私偏好的噪声,以实现个性化隐私保护,同时上传隐私偏好对应的隐私等级给中央聚合服务器;在第二阶段,为实现对全局数据的充分保护,采取本地和中心同时保护的策略,并根据用户上传的隐私等级,添加符合全局DP阈值的噪声,以量化全局的隐私保护水平。实验结果表明,在MNIST和CIFAR-10数据集上,PDP-FL算法的分类准确度分别为93.8%~94.5%和43.4%~45.2%,优于基于本地化差分隐私的联邦学习(LDP-Fed)和基于全局差分隐私的联邦学习(GDP-FL),同时满足了个性化隐私保护的需求。  相似文献   

16.
联邦学习是一种不通过中心化的数据训练就能获得机器学习模型的系统,源数据不出本地,降低了隐私泄露的风险,同时本地也获得优化训练模型。但是由于各节点之间的身份、行为、环境等不同,导致不平衡的数据分布可能引起模型在不同设备上的表现出现较大偏差,从而形成数据异构问题。针对上述问题,提出了基于节点优化的数据共享模型参数聚类算法,将聚类和数据共享同时应用到联邦学习系统中,该方法既能够有效地减少数据异构对联邦学习的影响,也加快了本地模型收敛的速度。同时,设计了一种评估全局共享模型收敛程度的方法,用于判断节点聚类的时机。最后,采用数据集EMNIST、CIFAR-10进行了实验和性能分析,验证了共享比例大小对各个节点收敛速度、准确率的影响,并进一步分析了当聚类与数据共享同时应用到联邦学习前后各个节点的准确率。实验结果表明,当引入数据共享后各节点的收敛速度以及准确率都有所提升,而当聚类与数据共享同时引入到联邦学习训练后,与FedAvg算法对比,其准确度提高10%~15%,表明了该方法针对联邦学习数据异构问题上有着良好的效果。  相似文献   

17.
在联邦学习背景下, 由于行业竞争、隐私保护等壁垒, 用户数据保留在本地, 无法集中在一处训练. 为充分利用用户的数据和算力, 用户可通过中央服务器协同训练模型, 训练得到的公共模型为用户共享, 但公共模型对于不同用户会产生相同输出, 难以适应用户数据是异质的常见情形. 针对该问题, 提出一种基于元学习方法Reptile的新算法, 为用户学习个性化联邦学习模型. Reptile可高效学习多任务的模型初始化参数, 在新任务到来时, 仅需几步梯度下降就能收敛到良好的模型参数. 利用这一优势, 将Reptile与联邦平均(federated averaging, FedAvg)相结合, 用户终端利用Reptile处理多任务并更新参数, 之后中央服务器将用户更新的参数进行平均聚合, 迭代学习更好的模型初始化参数, 最后将其应用于各用户数据后仅需几步梯度下降即可获得个性化模型. 实验中使用模拟数据和真实数据设置了联邦学习场景, 实验表明该算法相比其他算法能够更快收敛, 具有更好的个性化学习能力.  相似文献   

18.
联邦学习技术的飞速发展促进不同终端用户数据协同训练梯度模型,其显著特征是训练数据集不离开本地设备,只有梯度模型在本地进行更新并共享,使边缘服务器生成全局梯度模型。然而,本地设备间的异构性会影响训练性能,且共享梯度模型更新具有隐私泄密与恶意篡改威胁。提出云-边融合的可验证隐私保护跨域联邦学习方案。在方案中,终端用户利用单掩码盲化技术保护数据隐私,利用基于向量内积的签名算法产生梯度模型的签名,边缘服务器通过盲化技术聚合隐私数据并产生去盲化聚合签名,确保全局梯度模型更新与共享过程的不可篡改性。采用多区域权重转发技术解决异构网络中设备计算资源与通信开销受限的问题。实验结果表明,该方案能够安全高效地部署在异构网络中,并在MNIST、SVHN、CIFAR-10和CIFAR-100 4个基准数据集上进行系统实验仿真,与经典联邦学习方案相比,在精度相当的情况下,本文方案梯度模型收敛速度平均提高了21.6%。  相似文献   

19.
顾育豪  白跃彬 《软件学报》2023,34(6):2833-2864
随着数据孤岛现象的出现和个人隐私保护的重视,集中学习的应用模式受到制约,而联邦学习作为一个分布式机器学习框架,可以在不泄露用户数据的前提下完成模型训练,从诞生之初就备受关注.伴随着联邦学习应用的推广,其安全性和隐私保护能力也开始受到质疑.对近年来国内外学者在联邦学习模型安全与隐私的研究成果进行了系统总结与分析.首先,介绍联邦学习的背景知识,明确其定义和工作流程,并分析存在的脆弱点.其次,分别对联邦学习存在的安全威胁和隐私风险进行系统分析和对比,并归纳总结现有的防护手段.最后,展望未来的研究挑战和方向.  相似文献   

20.
联邦学习(federated learning)可以解决分布式机器学习中基于隐私保护的数据碎片化和数据隔离问题。在联邦学习系统中,各参与者节点合作训练模型,利用本地数据训练局部模型,并将训练好的局部模型上传到服务器节点进行聚合。在真实的应用环境中,各节点之间的数据分布往往具有很大差异,导致联邦学习模型精确度较低。为了解决非独立同分布数据对模型精确度的影响,利用不同节点之间数据分布的相似性,提出了一个聚类联邦学习框架。在Synthetic、CIFAR-10和FEMNIST标准数据集上进行了广泛实验。与其他联邦学习方法相比,基于数据分布的聚类联邦学习对模型的准确率有较大提升,且所需的计算量也更少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号