首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
为了改善电容换相换流器(capacitor commutated converter,CCC)的故障特性,提出了一种基于反并联晶闸管全桥子模块的新型电容换相换流器拓扑(enhanced capacitor commutated converter,ECCC)。ECCC从提高电容电压可控性的角度出发,将换流阀和换流变压器之间的固定电容替换为反并联晶闸管全桥子模块。设计了子模块晶闸管与阀臂晶闸管的协调控制策略;分析了子模块晶闸管的电压电流应力。在PSCAD/EMTDC环境中对ECCC的子模块电压电流应力、抵御换相失败的能力和换相失败后恢复能力进行了仿真研究。结果表明:ECCC可以有效降低换相失败发生的概率;同时,由于其对电容电压的灵活控制能力,可以有效避免换相失败发生后类似CCC换流器失去自恢复能力的问题,具备故障快速恢复能力;并且,子模块的电压电流应力均在合理范围内。  相似文献   

2.
为有效降低电网换相高压直流(line-commutated converterhighvoltagedirectcurrent,LCC-HVDC)输电系统换相失败的概率,提出串联电压换相变流器(seriesvoltage commutated converter,SVCC)方案。该方案以直接增加换流阀换相电压面积为目标,将级联的全桥子模块变流链接入换流变压器与LCC换流阀交流端口之间,通过灵活控制串联电压对阀组辅助换相。基于全桥子模块的8种工作状态,设计变流链串联电压辅助换相策略及电容电压控制方法;以SVCC临界换相电压为依据,提出子模块电容容值及额定电压的优选方法。PSCAD/EMTDC仿真结果表明,SVCC拓扑能灵活切换子模块变流链的工作状态,所提出电容电压控制效果良好,与仿真结果吻合度高。相比其他方案,SVCC对交流系统电压暂降的电压补偿响应速度快,可显著提高LCC-HVDC防御换相失败的能力。此外,当交流系统故障超出SVCC抑制换相失败范围,SVCC所采取的紧急应对措施降低了变流链内开关器件的电流应力要求,提高了其工程实用性。  相似文献   

3.
为提高传统直流输电系统抵御换相失败的能力,改善系统故障期间的动态特性,提出了一种基于晶闸管型全桥子模块(T-FBSM)的复合型电网换相换流器拓扑,在故障期间可以通过控制工作模式的切换同时实现换相电压的补偿及直流电流增长的抑制,从而提高换相失败的免疫能力。研究了T-FBSM与换流阀的协调控制策略,并设计了T-FBSM电气参数。最后,在PSCAD仿真环境中设置不同仿真案例,验证了所提新拓扑的电压、电流应力及换相失败抑制效果。仿真结果表明,所提复合式电网换相换流器拓扑协调控制策略及所设计的T-FBSM电气参数合理、有效,同时所提拓扑可以有效降低换相失败概率,并可改善系统的恢复特性。  相似文献   

4.
为提高电网换相换流器(line commutated converter high voltage direct current,LCC-HVDC)在严重故障情况下抵御换相失败的能力,提出了一种基于全控阻容子模块(fully controlled resistance-capacitance sub-module,FC...  相似文献   

5.
为了有效减小电网换相高压直流输电(line-commutatedconverter based high voltage direct current,LCC-HVDC)的换相失败概率,文中提出一种基于全桥晶闸管型耗能子模块的新型LCC换流器拓扑,可有效抑制暂态直流电流的增长,降低换相失败概率。文中给出子模块的不同工作模式,提出子模块与阀臂之间的协调控制策略及子模块参数的设计方法,分析耗能电阻的能耗及散热问题。最后在PSCAD中进行仿真分析,结果表明,所设计的控制参数是合理的,子模块电压电流应力均在合理范围内,电阻的能耗也可以满足要求;而且,所提新型LCC换流器拓扑可以有效抑制换相失败,并改善系统的暂态特性。  相似文献   

6.
针对混合直流输电系统换相失败时冲击电流较大的问题,本文推导了冲击电流幅值与电压源型换流器(Voltage Source Converter, VSC)的关系,分析确定了换相失败时VSC投入的子模块数量是决定冲击电流的关键参数。研究了影响电网换相换流器(Line Commutated Converter, LCC)换相能力的主要因素,提出了一种基于主动限流的换相失败抑制策略,通过对VSC调制波交流分量与直流分量附加扰动因数来改变子模块的投切,实现了对换相失败冲击电流的抑制。本文通过在Matlab/Simulink中搭建相应的仿真模型,对提出的抑制策略在逆变交流侧故障下的有效性进行了仿真验证,结果表明,该策略不仅能够限制冲击电流,还可以有效预防连续换相失败的发生。  相似文献   

7.
为提高传统直流输电系统抵御换相失败的能力,改善系统故障期间的动态特性,提出了一种基于晶闸管型全桥子模块(T-FBSM)的复合型电网换相换流器拓扑,在故障期间可以通过控制工作模式的切换同时实现换相电压的补偿及直流电流增长的抑制,从而提高换相失败的免疫能力.研究了T-FBSM与换流阀的协调控制策略,并设计了T-FBSM电气...  相似文献   

8.
为了降低电网换相高压直流输电(line-commutatedconverter high voltage direct current,LCC-HVDC)的换相失败概率,提出一种LCC-HVDC改进拓扑。该拓扑从增大换流阀换相电压的角度出发,在原阀臂中串联接入新型可控子模块,以辅助换相。首先介绍该拓扑中子模块的3种工作状态,并分析子模块开关管的电压和电流。然后设计改进拓扑的控制策略,提出"最优充电初始电压"这一概念,并对其进行优化计算。PSCAD/EMTDC仿真结果表明,该拓扑能灵活切换子模块的工作状态,提高了LCC-HVDC防御换相失败的能力;所提出"最优充电初始电压"的优化计算方法效果良好,对该拓扑的换相失败防御能力有进一步的提升作用。  相似文献   

9.
为保持传统电网换相换流器(line commutated converter,LCC)低损耗、高可靠性和经济性等优点的同时,又避免换相失败故障风险,提出一种新型具有可控关断能力的电网换相换流器(controllable line commutated converter,CLCC)拓扑结构。该拓扑基于全控和半控器件混联的设计思路,首先通过全控型器件转移电流,等待晶闸管关断能力恢复后,再利用全控器件关断电流以快速完成桥臂间换相。可控电网换相换流器主要包括常规换流和可控换流2种运行模式,研究不同运行模式下换流器的工作原理及换流器内部控制策略。通过搭建特高压直流输电系统仿真模型,分析可控电网换相换流器的暂、稳态和典型故障态运行特性。仿真结果表明,在发生交流故障时,可控电网换相换流器可以主动关断桥臂电流实现强迫换相,同时提供一定的无功支撑,解决多馈入直流系统换相失败问题,有利于提高电网安全稳定运行水平,提升多直流馈入受端电网电力接纳能力。  相似文献   

10.
采用自关断功率半导体器件的电流源型主动换相换流器(actively commutated converter,ACC)具有有功与无功功率可解耦、不存在换相失败、无需大量储能电容等特点,在高压直流输电领域具有较好的应用前景。该文针对适用于高压直流输电(high voltage direct current,HVDC)的ACC功率半导体器件及其均压方法、电路拓扑、调制方法、功率特性、控制策略、故障及保护方法等进行调研和分析。结合具体实例,将ACC与现有HVDC的2种换流器,即电网换相换流器(line commutated converter,LCC)和模块化多电平换流器(modular multilevel converter,MMC)进行对比分析。同时,对ACC的潜在应用、存在的问题以及发展的方向进行总结和归纳。  相似文献   

11.
基于电网换相换流器和电压源换流器串联的混合直流换流器在克服交流故障时的换相失败和直流故障时的重启动具有优势。分析了该混合直流换流器运行方式、控制策略、电压源换流器保护原理、抵御换相失败原理和直流线路重启过程,认为由该混合直流换流器组成的高压直流输电系统,可克服传统直流和柔性直流输电的主要缺点。当逆变侧的交流系统发生故障时,电压源换流器可提供电压支撑来抑制直流电流增加,缓解电网换相换流器换相失败效应。当直流线路发生故障时,逆变侧电网换相换流器可阻断电压源换流器产生的故障电流,具备直流线路故障重启能力。另外,电压源换流器还为电网换相换流器提供无功功率,从而减少换流站无功设备配置。  相似文献   

12.
改进型并联电容换相换流器(evolutional shunt capacitor commutated converter,ESCCC)通过在交流母线侧投切电容,可以实现降低直流线路损耗的单位功率因数控制,但是存在交流线路电感较大、阀电压应力大等问题。针对此问题,提出一种并联LC换相换流器(shunt LC commutated converter,SLCCC)及其控制策略,可有效降低换流器占地面积,改善系统性能。建立拓扑结构和数学模型,分析其换相特性,通过多目标规划方法设计电感、电容等参数,并设计可实现有功、无功功率解耦的闭环控制策略。最后,在PSCAD/EMTDC环境中对参数设计和控制策略进行仿真验证,结果表明,新型换流器拓扑不仅可以降低换流器占地面积和直流线路损耗,提高抵御换相失败的能力,而且实现了闭环解耦单位功率因数控制。  相似文献   

13.
研究了电容换相换流器(capacitor commutation converter,CCC)逆变侧的故障特性,以及避免逆变侧单相短路故障后发生后续持续故障的对策、原理及操作时序。借鉴交流系统高压线路串联补偿补技术原理,首次运用"可控旁通开关"思想,成功解决了CCC直流输电系统逆变侧发生故障后不易恢复的缺陷,并通过仿真验证了策略的可行性。研究结果对于进一步提高CCC直流输电系统的动态特性及CCC直流输电技术的进一步推广具有重要意义。  相似文献   

14.
提出一种永磁直驱式风机经混合直流系统并网的拓扑,直流系统整流侧采用模块化多电平换流器(modular multilevel converter,MMC),逆变侧采用电网换相换流器(line commutated converter,LCC)。该系统结合了MMC和LCC各自的优点,既可以为风电场无源系统提供电压支撑,又可以降低投资成本和运行损耗。MMC可以通过子模块投切瞬间改变直流侧级联子模块输出的总电压。基于此项特性,提出整流侧MMC控制直流电流的方法,将MMC的控制维度从交流侧拓展至直流侧。仿真结果表明,在逆变侧主网发生远区故障时,整流侧MMC可以抑制直流电流增长,降低换相失败发生的机会;在逆变侧发生换相失败后,可以帮助系统平稳地恢复直流功率,实现故障穿越功能。  相似文献   

15.
模块化多电平换流器(modular multilevel converter, MMC)由大量的子模块串联而成,MCC子模块的运行状态直接影响整个换流站的运行,所以研究MMC子模块的故障特性及故障快速检测与定位方法具有重要意义。本文首先分析了MMC子模块发生短路故障的特性,推导出故障分量的计算公式;然后提出了一种基于MMC子模块电容电压的新型微分欠压检测方法,实现了对MMC故障子模块的检测;最后利用小波变换进行故障IGBT的定位。PSCAD/EMTDC仿真实验表明,本文提出的方法能够准确计算发生MMC短路故障后的IGBT电容电压,并且在不引入额外测量装置的情况下,能快速检测故障子模块并定位故障IGBT,仿真结果验证了本文提出方法的有效性和可靠性。  相似文献   

16.
传统直流输电存在换相失败问题,且交流侧需要大量的滤波器和无功补偿装置,体积大、成本高.串联电容换相换流器可以抑制换相失败的发生,但无法补偿大量无功功率;并联电容换相换流器能够降低换相失败概率,但存在谐振等风险.针对此问题,提出一种改进型并联电容换相换流器(ESCCC),在换流阀交流出口侧并联电容的基础上,引入了串联滤波...  相似文献   

17.
采用全控型电力电子器件改造电网换相换流器高压直流输电技术(line commutated converter high voltage direct current,LCC-HVDC)来抑制换相失败(commutation failure,CF)是目前研究热点,但忽略器件差异性会对拓扑作用原理和器件电气应力分析产生关键影响,降低了工程应用的参考意义。文中研究一种由晶闸管与可关断管串联构成的混合换流阀(hybrid series converter valve,HSCV),考虑器件特性的差异。设计HSCV的工作状态,分析HSCV的抵御CF的作用原理。对HSCV器件进行合理选型并设计关断时序。分析关断过电压现象,并基于电压电流应力提出可关断管动态均压支路参数的设计原则。SABER和PSCAD/EMTDC仿真结果表明,HSCV能够增大晶闸管恢复正向阻断能力的时间,防止该阀重新导通和倒换相;提出的参数设计原则可以合理设计动态均压支路,有效解决可关断管的过电压问题,满足器件参数要求;相较于LCC-HVDC系统和其他经全控型电力电子器件改造的LCC-HVDC系统,基于HSCV的高压直流输电系统具备...  相似文献   

18.
电网换相换流器高压直流(line commutated converter high voltage direct current , LCC-HVDC)在逆变侧交流系统故障时,容易出现换相失败。换相失败预测(commutation failure prevention , CFPREV)是避免换相失败的主要手段,为解决其给定阈值不能满足所有故障工况的问题,从换相失败原理出发,分析CFPREV启动阈值和触发角调节量增益与换相失败之间的关系、交流母线电压对启动阈值和触发角调节量增益的影响以及故障时刻对启动阈值的影响,提出以交流母线电压为指标,对启动阈值和增益进行优化,在一定程度上提升了换相失败免疫能力。通过PSCAD/EMTDC电磁暂态仿真平台进行仿真验证,结果表明优化后的CFPREV相比于常规的CFPREV能够更有效地抑制换相失败的发生。  相似文献   

19.
受端电网的直流接入能力是高压直流输电系统规划和运行的关键问题之一。从可控电容换相换流器接入弱交流受端电网对换相失败的影响出发,在对可控电容换相换流器基本原理和拓扑结构进行分析的基础上,建立了可控电容换相换流器的稳态数学模型。为更接近工程实践和提升控制精度,考虑了高压直流控制系统的响应特性,并研究了以换相电压时间面积为控制目标的含可控电容换相换流器的响应控制策略。针对短路故障引起的换相失败,提出了利用限压器-并联间隙组合保护装置的故障恢复策略以缩短电容换相换流器的故障恢复时间。最后基于PSCAD/EMTDC平台,通过仿真验证并和其他方案的对比研究证明了上述控制策略对于降低弱受端逆变站换相失败风险和故障恢复的有效性。  相似文献   

20.
基于可关断功率半导体器件的电流源型主动换相换流器(actively commutated converter,ACC)具有电路拓扑简单、功率因数可控、支持黑启动、不存在换相失败风险、直流侧无需配置储能电容等优点,相比传统电网电压换相换流器(linecommutatedconverter,LCC)可以提高可控性,相对于电压源型换流器(voltage source converter,VSC)可减小换流器的重量和体积,降低成本,具有广阔的应用前景。但是,ACC将功率半导体器件串联使用以提高电压等级,功率半导体器件的开关频率受到严重限制。为了实现低开关频率下的低谐波电流,该文在分析ACC约束条件及特定谐波消除法(selective harmonic elimination,SHE)工作原理的基础上,提出了通过"虚拟相电流"生成换流器触发信号的调制方法,可以在满足ACC开关约束的条件下显著简化SHE调制方法的实现过程。仿真和实验结果验证该文理论分析及所提出的SHE调制策略和零开关状态分配原则的正确性和有效性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号