首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用化学共沉积方法制备了5种不同化学成分的氢氧化镍正极材料。用含有Co、Zn、Ca、Mg、Cu或者Mn元素的化合物与硫酸镍混合,在一定的搅拌速率、温度和pH值下使之相互发生反应。XRD衍射分析表明所制备材料的显微结构为β-Ni(OH)2。SEM图片显示氢氧化镍为球形颗粒,且颗粒表面略显粗糙。电化学测试结果表明氢氧化镍样品B在不同的充放电倍率和温度下具有优异的性能,25和65℃下、充放电倍率分别为1和3 C时氢氧化镍样品B的放电容量均超过了285 mAh·g-1。实验表明,通过化学共沉积其他元素可以制备性能优异的氢氧化镍正极材料,这将有益于改进镍氢电池的性能。  相似文献   

2.
采用微乳液化学共沉淀法制备出稀土Y(Ⅲ)与Mg(Ⅱ)复合掺杂非晶态氢氧化镍粉体材料。应用XRD、SAED、SEM及Raman测试样品材料的表观形貌及微结构特征,同时研究样品材料电极的电化学性能。结果表明:复合掺杂Y(Ⅲ)/Mg(Ⅱ)的非晶态氢氧化镍粉体微结构缺陷较多,无序性增强,呈不规则的类球形;材料粉体作为MH-Ni电池正极活性物质,在充放电过程中电化学阻抗较小,在以0.2C充放电,终止电压为1.0V的制度下,其放电比容量高达到364.75mAh·g-1,同时放电中值电压较高并稳定于1.276V,1C下其放电比容量可达348.82mAh·g-1,充放电循环50次容量保持率为91.87%,显示出良好的较大倍率放电性能和循环可逆性能。  相似文献   

3.
以柠檬酸为螯合剂和碳源,采用溶胶凝胶法在强弱不同条件下制备锂离子正极材料Li3V2(PO4)3/C.利用XRD、SEM和恒电流充放电等进行测试和表征.结果表明,所有样品为纯相的单斜Li3V2(PO4)3,制备条件的不同不会影响Li3V2(PO4)3正极材料的晶型结构和晶胞参数,但对材料颗粒尺寸有较大影响,加入蔗糖可以抑制颗粒的长大和团聚,从而影响电化学性能;在3.0~4.3 V电压,由于Li3V2(PO4)3结构的稳定性,在低倍率下表现出优异的循环性能;随着颗粒的变大和团聚,材料的倍率性变差,在高倍率下充放电容量衰减快.  相似文献   

4.
覆钴型氢氧化镍的制备   总被引:8,自引:0,他引:8  
通过"管道式合成"工艺制备了球形氢氧化镍,然后以化学沉积法在氢氧化镍表面包覆氢氧化钴,制备了表面覆钴含量不同(0.75%~6.00%,质量分数,下同)的覆钴型氢氧化镍.利用X射线衍射、扫描电镜和恒流充放电技术测试了其相结构、表面微观形貌和质量比容量、循环寿命等,研究了覆钴型氢氧化镍表面不同含量的钴对组织结构及电化学性能的影响.X射线衍射和扫描电镜分析表明:表面包覆不同含量钴的氢氧化镍结构仍为β相,但其表面形貌各有不同.电化学测试结果表明:表面覆钴含量1.5%~2.0%左右的氢氧化镍具有优良的电化学循环稳定性及大电流(2C)充放电性能优异,300次循环后比容量仍能保持约80%,可作为氢镍动力电池的正极材料.  相似文献   

5.
采用喷雾干燥结合低温微波水热法制备了石墨烯/LiFePO<sub>4</sub>复合正极材料,利用SEM、XRD、DLS等对其微观形貌、结构、粒度分布进行了表征,并利用恒流充放电、CV、EIS等测试研究了复合正极材料的电化学性能和电极动力学过程。结果表明,与未包覆的样品相比,石墨烯包覆的LiFePO<sub>4</sub>具有优异的倍率性能(5C放电比容量为125.4 mAh?g<sub>-1</sub>)和循环稳定性(1C条件下100次充放电后容量保持率在95%左右)。包覆石墨烯后LiFePO<sub>4</sub>正极材料的电荷迁移电阻减小,电化学可逆性增强,从而提高了材料的倍率性能。本文提供了一条提高磷酸铁锂正极材料电化学性能的简便途径,具有良好的应用前景。  相似文献   

6.
采用快速冷冻沉淀法制备出了非晶态纳米氢氧化镍。对制得材料样品进行了XRD,SEM,TEM,DSC和比表面积与孔径分析,将其制成MH-Ni电池正极材料进行充放电性能测试。结果表明:材料粉体为非品态,颗粒粒度为纳米级,类似球形。非晶纳米Ni(OH)2的热分解温度286.4℃低于常规球形Ni(OH)2的热分解温度333.8℃,同时具有较大得比表面积和孔径,分别为76.2089m^2·g^-1和37.7nm。与普通β-Ni(OH)2相比较,非晶态纳米氢氧化镍电极充电电压低,放电电压平台时间长,且高达1.258V,放电比容量为349.85mAh/g,具有较好的循环性能,20次循环后其容量衰减仅为1.28%。  相似文献   

7.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

8.
通过化学反应和高温煅烧的方法制备了电池负极材料CuSnO_3和CuSnO_3/SnO,研究了两种电池负极材料的电化学性能、倍率性能和循环充放电前后负极材料的显微形貌。结果表明,电池负极材料CuSnO_3的倍率性能较低,这主要与电池负极材料CuSnO_3的稳定性较差,在循环充放电过程中,材料的自身结构受到破坏有关;对电池负极材料CuSnO_3进行复合改性后,CuSnO_3/SnO在不同电流密度下的比容量明显提高,且倍率性能较好,这主要是因为电池负极材料CuSnO_3/SnO球形颗粒表面附着有细小的纳米级颗粒,可以在充放电过程中抑制球形颗粒的体积膨胀,从而保证电池负极材料CuSnO_3/SnO具有良好的充放电循环性能和倍率性能。  相似文献   

9.
采用快速冷冻沉淀法制备添加PO43-和 Mg2+阴阳离子的非晶态氢氧化镍电极活性粉体材料,对其微结构和电化学性能进行研究。结果表明:添加5%PO43-(质量分数,下同)和2% Mg2+的非晶态样品粉体形貌为无规则,微结构无序性强,含有较多的结晶水,达31%。其作为MH-Ni电池正极活性材料,放电容量为347 mAh·g-1,中值电压达1.29 V,放电倍率对样品电极的放电比容量影响不大;充放电循环50次,容量衰减为3.5%,具有较好的稳定性;质子扩散系数达9.22×10-10 cm2·s-1,并具有较小电化学阻抗。与β-Ni(OH)2材料相比,其电化学性能明显提高。  相似文献   

10.
用溶胶-凝胶法制备Ti4+掺杂的Li2FeSiO4/C正极材料。用XRD、HRTEM和电化学方法研究了该材料的结构、形貌和电化学性能。结果表明,掺杂适量的Ti4+不会改变Li2FeSiO4/C的正交晶系结构,可以稳定材料的结构,改善高倍率充放电性能。在室温下,Li2Fe0.97Ti0.03SiO4/C以0.1c倍率放电的首次放电比容量为149.1mA·h/g,20次循环后放电比容量为127.3mA·h/g,且不同倍率下的电化学性能明显优于未掺杂的Li2FeSiO4/C。交流阻抗谱研究表明,适量的Ti4+掺杂,减小了正极材料在充放电过程中的电荷传递电阻,增加了材料的电子电导率,改善了材料的电化学性能。  相似文献   

11.
高密度活性氢氧化镍的研究   总被引:9,自引:0,他引:9  
氢氧化镍是MH/Ni、Cd/Ni电池的关键材料,高容量和高利用率的球形氢氧化镍,对于开发高性能电池正极材料具有很重要的意义。本文介绍了采用化学结晶法生成球形氢氧化镍的基本原理、制备的工艺流程、样品的物性及活性分析,得出影响的主要条件是反应温度、pH值、反应剂浓度、络合剂以及进料的速度,得到了适宜的制备工艺条件。  相似文献   

12.
在氢氧化镍表面包覆氢氧化镱和氢氧化钴并用XRD、XPS、SEM和恒电流充放电技术进行表征。结果表明:β-Ni(OH)2为六方晶型,Co的存在形式主要为Co2+及有少量的Co3+。样品表面Co和Ni原子比大于8:1。65℃下0.2、1和3C恒电流充放电时,表面包覆2%Yb(OH)3的样品放电容量和活性物质利用率最大。65℃时经过30次充放电循环后,在不同的充放电倍率下,表面包覆不同量Yb(OH)3的氢氧化镍的放电循环稳定性和放电容量随着Yb(OH)3含量的增加而增大。  相似文献   

13.
在氢氧化镍表面包覆氢氧化镱和氢氧化钴并用XRD、XPS、SEM和恒电流充放电技术进行表征。结果表明:β-Ni(OH)2为六方晶型,Co的存在形式主要为Co2+及有少量的Co3+。样品表面Co和Ni原子比大于8:1。65℃下0.2、1和3C恒电流充放电时,表面包覆2%Yb(OH)3的样品放电容量和活性物质利用率最大。65℃时经过30次充放电循环后,在不同的充放电倍率下,表面包覆不同量Yb(OH)3的氢氧化镍的放电循环稳定性和放电容量随着Yb(OH)3含量的增加而增大。  相似文献   

14.
LiFePO4/C复合正极材料的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用高温固相碳热还原法(CTR,Carbothermal Reduction)合成了LiFePO4/C复合正极材料。采用XRD,SEM以及BET等方法对产物进行表征。结果表明,所得LiFeP04/C材料有着单一的橄榄石型晶体结构。750℃下制备产物的BET比表面积为39.7002m^2/g。利用恒流充放电,循环伏安法(CV),电化学阻抗谱(EIS)等电化学手段研究了LiFePO4/C材料的电化学性质。结果表明:750℃下制备的LiFePO4/C复合材料在25℃工作温度下,有着优异的循环稳定性和大倍率充放电性能,使用850ma/g(5C)的电流密度对电池充放电90次后,电池放电比容量仍能保持11lmAh/g。在55℃工作温度下1C充放电倍率时,首次和第90次循环的放电比容量分别为14513mAh/g和142.9mAh/g。  相似文献   

15.
为改善LiNi_(0.5)Mn_(1.5)O_4的倍率性能和循环性能,采用二步固相法制备了F-掺杂的LiNi_(0.5)Mn_(1.5)O_(4-x)F_x(x=0,0.05,0.1,015,0.2)正极材料,讨论了不同F掺杂量对材料性能的影响。X射线衍射、扫描电镜结果表明,掺杂和未掺杂的正极材料都为单一的尖晶石结构,粒度分布均匀。充放电测试、循环伏安和交流阻抗测试结果表明:当F的掺杂量为x=0.1时(LiNi_(0.5)Mn_(1.5)O_(3.9)F_(0.1))正极材料的性能最好,0.1,0.5,1,2及5C倍率的首次放电比容量依次为129.07,123.59,118.49,114.49和92.57 mAh/g。1C倍率下循环30次,容量保持率仍为98.84%。  相似文献   

16.
稀土Y掺杂非晶态纳米Ni(OH)2的结构及其电化学性能研究   总被引:2,自引:1,他引:1  
以Tween-80/n-C4H9OH/c-C6H12/NiSO4水溶液体系,采用微乳液快速冷冻沉淀法制备出稀土Y掺杂非晶态纳米级氢氧化镍粉体材料.采用XRD、SAED、SEM、TEM、EDS、Raman、IR,粒度分析和比表面等测试方法对所制备的粉体进行了结构形态表征,并对其充放电性能和交流阻抗谱进行测试.结果发现,适量稀土元素Y的掺入使非晶态纳米氢氧化镍的结构缺陷增多、无序性增强,平均粒度减小、比表面积增大,有利于降低其溶液电阻、电荷转移电阻和Warburg阻抗,从而提高其放电比容量.样品作为MH-Ni电池正极材料以0.2 C充放电,终止电压为1.0 V,当掺杂Y的质量分数为4%时,放电比容量达到333.3 mAh/g.  相似文献   

17.
氧化镍/氢氧化镍比容量高,来源丰富,成本低廉,环境友好,是国际上重点研究的一种新型赝电容电极材料。制约其应用的关键是其在大倍率充放电条件的电容性能。综述了大倍率高性能氧化镍/氢氧化镍超级电容薄膜电极材料工艺的研究进展,指出了各制备工艺的优缺点。在此基础上,发展了阳极电压振荡处理工艺,在镍片上获得了在电流密度为20mA/cm2时,比电容高达560mF/cm2,循环寿命超过10万次的高性能氢氧化镍超级电容薄膜电极材料。  相似文献   

18.
以[Ni1/3Co1/3Mn1/3]3O4和氢氧化锂为原料,分别采用球磨法和液相法前处理工艺制备层状正极材料Li[Ni1/3Mn1/3Co1/3]O2。采用X?射线衍射(XRD)、场发射扫描电镜(FESEM)、恒流充放电等手段对材料的物理和电化学性能进行表征。结果表明:采用不同前处理工艺制备出的Li[Ni1/3Mn1/3Co1/3]O2材料在结构、形貌和电化学性能上有较大差异;与球磨处理法制备的材料相比,采用液相法前处理工艺制备的Li[Ni1/3Mn1/3Co1/3]O2不但保持了前驱体较好的球形形貌,同时还具有较好的循环稳定性和倍率性能;该样品在20mA/g电流密度下,首次放电容量为178mA·h/g,50次循环后,容量保持率达98.7%;在1000mA/g电流密度下,样品容量为135mA·h/g。  相似文献   

19.
锰酸锂被认为是取代商品锂离子电池正极材料LiCoO2的候选材料,以二氧化锰、碳酸锂为原料,在空气气氛下进行烧结,控制烧结温度和时间,制备锂离子电池正极材料锰酸锂。用X射线衍射仪、电子扫描电镜对产物的结构特征、微观表面形貌和恒流充放电性能进行了表征。结果表明:所制得的正极材料为尖晶石型锰酸锂,结晶度高、无杂质相、材料颗粒的粒径均匀,首次充放电比容量为117.3 mAh/g(0.2C,3.3~4.4V);50次循环后,放电比容量为107.9 mAh/g,不可逆容量损失为9.4 mAh/g,比容量保持率为92.0%,得到了很好的综合电化学性能。  相似文献   

20.
采用电化学-量热法研究以LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料的锂离子电池在不同环境温度和充放电倍率下的热电化学性能。结果表明:环境温度和充放电倍率是影响电池比容量的重要因素,随着充放电倍率和环境温度的增加,电池比容量逐渐减小。在低倍率(0.2C)下,电池充放电初始阶段的热流缓慢增大,且出现多个放热峰;而在较高倍率(0.5、1.0、2.0C)下,电池充放电初始阶段的热流快速增长,且充电和放电过程分别仅出现一个明显的放热峰。通过热电化学研究,可获得电池充放电过程的产热量、化学反应焓变(ΔrH_m)以及化学反应熵变(ΔrS_m)等热力学参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号