首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
研究了回火温度对经一定温度淬火后的Q890高强度钢组织和力学性能的影响。结果表明,从920℃淬火并于200~700℃回火时,随着回火温度的升高,Q890钢的淬火马氏体逐渐转变为回火马氏体、回火托氏体及回火索氏体,硬度总体呈下降趋势;600℃回火后,Q890钢的组织主要为回火托氏体,硬度为35HRC。此外,经从920℃淬火和600℃回火的5~25mm厚Q890钢板的屈服强度均大于900MPa,-40℃的冲击韧度均大于45J。  相似文献   

2.
文成  田玉琬  王贵 《金属热处理》2015,40(4):129-134
以27SiMn钢贝氏体转变的冷速条件和温度范围为依据,采用正交方法进行了分段淬火的热处理试验。研究了淬火温度、淬火保温时间、回火温度、回火保温时间对于热处理后钢材力学性能的影响规律。结果表明,27SiMn钢获得贝氏体组织的最优热处理工艺为:910 ℃,30 min淬火(油冷至450 ℃后空冷至室温)+250 ℃,40 min回火,经该工艺热处理后27SiMn钢的屈服强度从423 MPa 提高到693 MPa,抗拉强度由689 MPa提高到890 MPa,伸长率和断面收缩率分别为28%和67%,冲击吸收能量由原来的的13 J提高到64 J,冲击韧性显著改善,满足了工程机械用钢的需求。  相似文献   

3.
黄开有  唐明华 《热加工工艺》2012,41(20):155-157
采用正交试验法研究了淬火加热温度、淬火保温时间、回火加热温度和回火保温时间对26CrMoNbTiB钻杆用钢强韧性的影响.结果表明,回火加热温度对实验钢的强度和伸长率影响最大,淬火加热温度次之.当淬火温度为910℃、保温时间为35 min,回火温度和时间分别为590℃和65 min时,26CrMoNbTiB钢的屈服强度为898 MPa,抗拉强度为973 MPa,伸长率为17.4%,具有良好的综合力学性能.  相似文献   

4.
比较了含1.90%Ni和4.92%Ni中碳Cr-Ni-Mo系超高强度钢不同淬火温度低温回火后的力学性能,分析了淬火温度、残余奥氏体量对力学性能的影响。结果表明,900℃淬火200℃回火后试验钢的抗拉强度、伸长率和-40℃冲击吸收功分别大于2200MPa、10%和10J。随着淬火温度的提高,抗拉强度、断后伸长率和断面收缩率先缓慢提高到最大值后开始缓慢下降。4.92%Ni试验钢中大量残余奥氏体导致其屈服强度和屈强比降低、应变硬化指数增大,在拉伸过程中残余奥氏体应变诱导马氏体相变和相变诱发塑性(TRIP),伸长率、静力韧度和塑性变形能均有明显提高。  相似文献   

5.
对自制的高强海洋平台用合金钢850℃油淬后进行200~650℃×2 h回火处理,研究了回火温度对试验钢显微组织和力学性能的影响。结果表明:随回火温度的升高,试验钢的淬火组织逐渐转变为回火马氏体、回火屈氏体和回火索氏体;强度和硬度逐渐下降,但与抗拉强度相比,上屈服强度下降得更慢些,塑性总体呈现升高趋势。600℃回火试样拉伸过程中出现屈服平台,继续提高回火温度,屈服现象更明显。冲击性能随回火温度的升高先下降后上升,在300~500℃范围内出现明显的回火脆性。当回火温度为600℃时强韧性匹配最好,抗拉强度840 MPa,上屈服强度760 MPa,断后伸长率17%,-40℃冲击吸收能量175 J。  相似文献   

6.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

7.
对12MnNiVR压力容器钢进行热轧和950℃淬火,并对其分别在600、630、660和690℃下进行回火处理。并通过光学显微镜、扫描电镜、透射电镜、拉伸试验机和冲击试验机对试验钢的进行微观组织形貌观察和力学性能检测。结果表明:淬火后试验钢组织由马氏体、贝氏体及少量残留奥氏体组成。回火后组织主要是回火马氏体以及回火索氏体。随回火温度的升高,部分回火马氏体消失,形成回火索氏体组织。试验钢强度在较低的回火温度时下降缓慢,较高回火温度下强度急剧下降而伸长率则在不断增加。试验钢690℃回火时,获得较优的综合力学性能,屈服强度、抗拉强度、伸长率和-40℃下的冲击吸收能量分别达到605 MPa,670 MPa,25. 9%,113. 7 J。  相似文献   

8.
采用OM观察、拉伸试验、冲击试验等方法,研究了不同温度回火对30CrNi2MoV钢显微组织及性能的影响规律。结果表明:540℃回火处理后,30CrNi2MoV钢试样组织为铁素体和片状渗碳体,630℃回火时组织为铁素体与颗粒状碳化物的混合组织。在540~630℃范围内,随着回火温度的升高,铁素体基体重新结晶,片状渗碳体逐渐发生粗化、扩散,最后呈颗粒状,均匀分布在基体中,30CrNi2MoV钢试样的抗拉强度和屈服强度逐渐降低,伸长率逐渐升高,冲击吸收能量先降低后升高。630℃回火后,30CrNi2MoV钢屈服强度满足压裂泵阀箱材料≥680 MPa的技术要求,且韧性最高,达到183 J/cm~2,可以更好地抵抗冲击应力,提高产品使用寿命。  相似文献   

9.
采用扫描电镜、EDS分析、拉伸和低温冲击试验等研究了低碳舰船高强钢在固溶和不同温度时效处理后的显微组织和力学性能。结果表明:试验钢在900 ℃保温30 min固溶处理后的显微组织为多边形铁素体和贝氏体/马氏体,屈服强度和抗拉强度较低,分别为505 MPa和625 MPa。随着时效温度的升高,试验钢的强度出现了先升高后降低的变化趋势,在时效温度为500 ℃时的抗拉强度和屈服强度最高,分别为783 MPa和747 MPa,断后伸长率为11.5%,-20 ℃的冲击吸收能量为96 J。  相似文献   

10.
采用扫描电镜(SEM)、能谱仪(EDS)、透射电镜(TEM)和X射线衍射(XRD)等研究了淬火温度对N63钢组织及性能的影响。结果表明:当淬火温度低于1050℃时,N63钢中观察到M23C6型未溶相;随淬火温度升高,N63钢中未溶相逐渐溶解,晶粒有长大趋势;N63钢在900~1150℃范围内淬火时(淬火后还进行了深冷及回火处理),随着淬火温度的升高,其抗拉强度先升高后降低,在1000℃淬火时达到峰值,为1479 MPa,屈服强度整体上呈降低趋势,在950℃淬火时达到峰值,为1209 MPa,冲击吸收能量先升高后略有降低,在1100℃淬火时达到峰值,为148 J。N63钢在1100℃淬火及深冷和回火处理后,碳化物完全溶解且组织完全奥氏体化,具有最佳的强韧性匹配,其抗拉强度为1470 MPa、屈服强度为1136 MPa,冲击吸收能量为148 J。  相似文献   

11.
比较了含1.90%Ni和4.92%Ni中碳Cr-Ni-Mo系超高强度钢不同淬火温度低温回火后的力学性能.分析了淬火温度、残余奥氏体量对力学性能的影响。结果表明,900℃淬火200℃回火后试验钢的抗拉强度、伸长率和-40℃冲击吸收功分别大于2200MPa、10%和10J。随着淬火温度的提高,抗拉强度、断后伸长率和断面收缩率先缓慢提高到最大值后开始缓慢下降。4.92%Ni试验钢中大量残余奥氏体导致其屈服强度和屈强比降低、应变硬化指数增大,在拉伸过程中残余奥氏体应变诱导马氏体相变和相变诱发塑性(TRIP),伸长率、静力韧度和塑性变形能均有明显提高。  相似文献   

12.
研究了热处理工艺参数对30Cr3MoV钢力学性能的影响规律。结果表明:30Cr3MoV钢在940~1180℃油冷淬火,开始时硬度逐渐增大,并在1060℃时达到最大值51.1 HR(,之后逐渐减小。试验钢在400~660℃空冷回火,开始时硬度稍有增大,并在500℃时达到最大值47.7 HRC,之后迅速减小。在940℃油冷淬火+600℃空冷回火的力学性能得到很大程度改善,相比H13芯棒钢,30Cr3MoV钢的屈服强度和抗拉强度分别提高261 MPa和198 MPa,冲击韧度提高9 J/cm~2,伸长率和断面收缩率相应提高4%和14%。  相似文献   

13.
利用扫描电镜(SEM)和透射电镜(TEM)研究了淬火温度对高铁车轴用钢显微组织和力学性能的影响。结果表明:随着淬火温度的升高,抗拉强度和规定塑性延伸强度先快速增大后缓慢减小,塑性变化不明显,冲击吸收能量持续下降,同时试验钢原始奥氏体晶粒长大,马氏体板条束(Packet)长大,淬火温度升高到900℃后晶粒迅速粗化,后续回火碳化物有所细化。在淬火温度为850℃时(675℃回火)试验钢具有最佳的综合性能:抗拉强度为796 MPa,规定塑性延伸强度为677 MPa,伸长率为24.5%, 25℃和-40℃的冲击吸收能量(A_(KU2)/sub,5 mm缺口)分别为82 J和72 J。  相似文献   

14.
研究了不同铁素体含量与回火温度对HSLA钢组织与力学性能的影响。结果表明:热轧HSLA钢从810~900℃淬火后组织为马氏体和37%~0%铁素体,且随淬火温度升高,铁素体晶粒尺寸减小,可动位错密度增加;高温回火后板条马氏体分解严重,位错密度降低并有大量碳化物析出;铁素体含量增加使屈服强度和抗拉强度降低,其中抗拉强度在450℃回火后下降约200 MPa,而屈服强度随回火温度的变化趋势决定于铁素体含量;180℃回火后铁素体与马氏体间的强度差使铁素体对拉伸性能和冲击性能表现出不同的断裂机理;450℃回火后铁素体与马氏体能够协调变形,伸长率与冲击吸收能量均随铁素体含量增加而提高。此外,均匀的马氏体有利于提高试验钢的低温韧性,其-40℃冲击吸收能量119 J。  相似文献   

15.
对800 MPa级在线淬火(DQ)水电钢回火工艺进行试验研究,分析了3种不同回火温度对试验钢组织和性能的影响。结果表明,控轧后770~820 ℃快速水冷淬火后,在620~680 ℃之间回火,随着回火温度的升高,钢的屈服强度、抗拉强度下降,伸长率和冲击吸收能量提高。650 ℃回火处理可使试验钢达到最佳的强度和韧性匹配。试验钢在620~680 ℃回火后的组织为回火贝氏体,随回火温度的升高,组织中的碳化物逐渐长大并呈现粒状分布,贝氏体组织呈现多边形化特征。  相似文献   

16.
冉华安 《热加工工艺》2014,(10):214-216
对含微量钼/钒耐火钢进行了不同工艺的回火处理,并进行了拉伸和0℃冲击试验与分析。结果表明,适当的回火处理可以提高含微量钼/钒耐火钢的室温抗拉强度、高温抗拉强度、室温屈服强度、高温屈服强度和零度冲击韧度。回火时间对其室温/高温抗拉强度、室温/高温屈服强度无明显影响,对0℃冲击韧度有影响;室温/高温抗拉强度、室温/高温屈服强度和0℃冲击韧度都随回火温度的升高而呈现出先增加后减小的趋势。该耐火钢的回火工艺优选为(550±5)℃×60 min油冷。  相似文献   

17.
通过光学显微镜(OM)、拉伸试验机、冲击试验机等研究了不同温度淬火对ZG25MnCrNiMo钢组织及性能的影响。结果表明:淬火态ZG25MnCrNiMo钢组织为板条马氏体。在840~930 ℃温度区间,随着淬火温度的升高,组织中板条马氏体逐渐变细,930 ℃淬火试验钢板条最为细小。ZG25MnCrNiMo钢经840~930 ℃淬火后,进行600 ℃回火,随着淬火温度的升高,试验钢抗拉强度先升高后降低,伸长率和低温冲击吸收能量先降低后升高。930 ℃淬火试验钢抗拉强度最大,为992 MPa。840 ℃淬火试验钢伸长率和-40 ℃低温冲击吸收能量最大,分别为17.1%和78 J。  相似文献   

18.
王琪  吴光亮 《金属热处理》2022,47(4):146-150
研究了920 ℃水淬+不同温度回火后1100 MPa级高强钢的显微组织和力学性能。结果表明:回火温度为250 ℃时,所得到的力学性能最佳,抗拉强度、屈服强度、硬度、断后伸长率和冲击吸收能量分别为1423 MPa、1220 MPa、446 HV5、14.2%和56 J。随回火温度的升高,抗拉强度、屈服强度、硬度值整体呈现下降的趋势,冲击吸收能量先减小后增加。回火温度为150 ℃时,组织为回火马氏体和ε碳化物,析出的ε碳化物呈细长杆状。回火温度上升到250 ℃之后,马氏体板条稍有粗化,ε碳化物长大。随回火温度继续升高,板条马氏体逐渐转变为等轴铁素体,ε碳化物也会转变为渗碳体并逐渐球化粗化。  相似文献   

19.
设计了一种低碳CuNiCrMnMo钢,并研究了3种热处理工艺(油淬+回火、水淬+回火和轧后直接淬火回火)条件下试验钢的组织与性能.试验钢经油淬和600 ℃回火1 h,屈服强度Rp0.2=645 MPa,抗拉强度Rm=745 MPa,-60 ℃冲击吸收能量为138 J;经水淬和650 ℃回火1 h,屈服强度Rp0.2= 668 MPa,抗拉强度Rm=721 MPa,-80 ℃下冲击吸收能量为216 J.经直接淬火和650 ℃回火1 h,达到最佳的强韧性匹配,即屈服强度Rp0.2=700 MPa,抗拉强度Rm=764 MPa,-80 ℃下冲击吸收能量为182 J.  相似文献   

20.
研究了超低碳微合金钢880 ℃×1 h水淬、不同温度及时间回火后的显微组织及力学性能,结果表明:试验钢经淬火后的显微组织是由粒状贝氏体、板条状贝氏体和残留奥氏体所组成,屈服强度799 MPa,抗拉强度986 MPa,伸长率14.5%,屈强比0.81。随回火温度的升高,屈服强度和抗拉强度增大,并于300 ℃时达最大值,分别为949 MPa和1053 MPa,此时显微组织中开始有析出物产生,随着回火温度继续升高,析出物开始聚集并长大,屈服强度和抗拉强度逐渐降低,屈强比增加,在450℃处达到最大值后开始下降。试验钢的伸长率与回火温度的变化未发现有明显规律。适当延长于380 ℃回火的保温时间后,试验钢的显微组织类型无明显变化,但析出物有聚集长大现象,强度稍有降低,塑性略有增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号