首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work proposes an improvement in performance with respect to the electrical efficiency of a bioethanol-fuelled Solid Oxide Fuel Cell (SOFC) system by replacing a conventional distillation column by a pervaporation unit in the bioethanol purification process. The simulation study indicates that the membrane separation factor has a significant influence on the electrical power and heat energy required to generate a feed of 25 mol% ethanol in water to the reformer. The values of overall electrical efficiency of the SOFC systems with a distillation column and with a pervaporation unit are compared under the thermally self-sufficient condition (Qnet = 0) which offers their maximum electrical efficiency. At the base case, the SOFC system with a pervaporation unit provides an electrical efficiency of 42% compared with 34% achieved from the system with a distillation unit, indicating a significant improvement by using a pervaporation unit. An increase in ethanol recovery can further improve the overall electrical efficiency. The study also reveals that further improvement of the membrane selectivity can slightly enhance the overall efficiency of the SOFC system. Finally, an economic analysis of a bioethanol-fuelled SOFC system with pervaporation is suggested as the basis for further development.  相似文献   

2.
The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump.The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX).The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain.Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.  相似文献   

3.
Solid oxide fuel cell systems integrated with a distillation column (SOFC-DIS) have been investigated in this study. The MER (maximum energy recovery) network for SOFC-DIS system under the base conditions (CEtOH = 25%, EtOH recovery = 80%, V = 0.7 V, fuel utilization = 80%, TSOFC = 1200 K) yields QCmin = 73.4 and QHmin = 0 kW. To enhance the performance of SOFC-DIS, utilization of internal useful heat sources from within the system (e.g. condenser duty and hot water from the bottom of the distillation column) and a cathode recirculation have been considered in this study. The utilization of condenser duty for preheating the incoming bioethanol and cathode recirculation for SOFC-DIS system were chosen and implemented to the SOFC-DIS (CondBio-CathRec). Different MER designs were investigated. The obtained MER network of CondBio-CathRec configuration shows the lower minimum cold utility (QCmin) of 55.9 kW and total cost index than that of the base case. A heat exchanger loop and utility path were also investigated. It was found that eliminate the high temperature distillate heat exchanger can lower the total cost index. The recommended network is that the hot effluent gas is heat exchanged with the anode heat exchanger, the external reformer, the air heat exchanger, the distillate heat exchanger and the reboiler, respectively. The corresponding performances of this design are 40.8%, 54.3%, 0.221 W cm−2 for overall electrical efficiency, Combine Heat and Power (CHP) efficiency and power density, respectively. The effect of operating conditions on composite curves on the design of heat exchanger network was investigated. The obtained composite curves can be divided into two groups: the threshold case and the pinch case. It was found that the pinch case which TSOFC = 1173 K yields higher total cost index than the CondBio-CathRec at the base conditions. It was also found that the pinch case can become a threshold case by adjusting split fraction or operating at lower fuel utilization. The total cost index of the threshold cases is lower than that of the pinch case. Moreover, it was found that some conditions can give lower total cost index than that of the CondBio-CathRec at the base conditions.  相似文献   

4.
《Journal of power sources》2006,154(2):479-488
An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a “dry” catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.  相似文献   

5.
This paper presents an exergetic analysis of a combined heat and power (CHP) system, integrating a near-atmospheric solid oxide fuel cell (SOFC) with an allothermal biomass fluidised bed steam gasification process. The gasification heat requirement is supplied to the fluidised bed from the SOFC stack through high-temperature sodium heat pipes. The CHP system was modelled in AspenPlus™ software including sub-models for the gasification, SOFC, gas cleaning and heat pipes. For an average current density of 3000 A m−2 the proposed system would consume 90 kg h−1 biomass producing 170 kWe net power with a system exergetic efficiency of 36%, out of which 34% are electrical.  相似文献   

6.
An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of Uf = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.  相似文献   

7.
A propane-fueled solid-oxide fuel-cell-based system is an extraordinary type of technology for stationary mobile power generation given that it offers higher efficiency, silent operation and clean conversion of hydrocarbon fuels. In this study, we designed and developed a 150 W-class tubular SOFC power-generation system integrated with a catalytic partial reformer (CPOX) for the propane fuel and heat exchangers with the goal of making a robust and compact system for portable power applications. Micro-tubular SOFC cells were fabricated by ceramic processing and the cells were assembled in the form of a short stack. The CPOX nano-catalyst CeO2Zr2O3/Pt supported on γ-Al2O3 was prepared and tested for its propane-reforming characteristics under the present operating conditions. The CPOX catalyst was used in the integrated reformer, and the performance of the 150 W-class SOFC power-generation system operating on propane fuel was studied. The rapid startup and temperature sustainability of the short stack were also monitored and stable stack temperatures were achieved within 20 min. Long-term galvanostatic operation of the power-generation system was also conducted to investigate the durability of the system. This study confirms that propane-fueled robust and compact 150 W-class power-generation systems are suitable for portable applications and that the role of efficient CPOX catalysts is crucial for high performance of the stack when operating on propane fuel.  相似文献   

8.
We have developed a 1 kW class solid oxide fuel cell (SOFC) stack composed of 50 anode-supported planar 120-mm-diameter SOFCs. Intermediate plates, which exhibited negligible deformation under operating conditions, were placed in the stack to cancel out the cumulative error related to the position and angle of the stack parts. The stack provided an electrical conversion efficiency of 54% (based on the lower heating value (LHV) of the methane used as a fuel) and an output of 1120 W when the fuel utilization, current density, and operating temperature were 67%, 0.28 A cm−2, and 1073 K, respectively. The stack operated stably for almost 700 h.  相似文献   

9.
A novel portable electric power generation system, fuelled by ammonia, is introduced and its performance is evaluated. In this system, a solid oxide fuel cell (SOFC) stack that consists of anode-supported planar cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode is used to generate electric power. The small size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. The results predicted through computer simulation of this system confirm that the first-law efficiency of 41.1% with the system operating voltage of 25.6 V is attainable for a 100 W portable system, operated at the cell voltage of 0.73 V and fuel utilization ratio of 80%. In these operating conditions, an ammonia cylinder with a capacity of 0.8 l is sufficient to sustain full-load operation of the portable system for 9 h and 34 min. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required in the SOFC stack, the first- and second-law efficiencies, the system operating voltage, the excess air, the heat transfer from the SOFC stack, and the duration of operation of the portable system with a cylinder of ammonia fuel, are also studied through a detailed sensitivity analysis. Overall, the ammonia-fuelled SOFC system introduced in this paper exhibits an appropriate performance for portable power generation applications.  相似文献   

10.
We propose a system that combines a seal-less planar solid oxide fuel cell (SOFC) stack and polymer electrolyte fuel cell (PEFC) stack. In the proposed system, fuel for the SOFC (SOFC fuel) and fuel for the PEFC (PEFC fuel) are fed to each stack in parallel. The steam reformer for the PEFC fuel surrounds the seal-less planar SOFC stack. Combustion exhaust heat from the SOFC stack is used for reforming the PEFC fuel. We show that the electrical efficiency in the SOFC–PEFC system is 5% higher than that in a simple SOFC system using only a seal-less planar SOFC stack when the SOFC operation temperature is higher than 973 K.  相似文献   

11.
A high temperature PEM fuel cell stack with a total active area 150 cm2 has been studied. The PEM technology is based on a polybenzimidazole (PBI) membrane. Cast from a PBI polymer synthesised in our lab, the performance of a three-cell stack was analysed in static and dynamic modes. In static mode, operating at high constant oxygen flow rate (QO2>1105 ml O2/min) produces a small decrease on the stack performance. High constant oxygen stoichiometry (λO2>3) does not produce a decrease on the performance of the stack. There are not differences between operating at constant flow rate of oxygen and constant stoichiometry of oxygen in the stack performance. The effect of operating at high temperature with a pressurization system and operating at higher temperatures are beneficial since the performance of the fuel cell is enhanced. A large shut-down stage produces important performance losses due to the loss of catalyst activity and the loss of membrane conductivity. After 150 h of operation at 0.2 A cm−2, it is observed a very high voltage drop. The phosphoric acid leached from the stack was also evaluated and did not exceed 2% (w/w). This fact suggests that the main degradation mechanism of a fuel cell stack based on polybenzimidazole is not the electrolyte loss. In dynamic test mode, it was observed a rapid response of power and current output even at the lower step-time (10 s). In the static mode at 125 °C and 1 atm, the stack reached a power density peak of 0.29 W cm−2 (43.5 W) at 1 V.  相似文献   

12.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

13.
A compact SOFC power generation system was developed by integrating a 1 kW SOFC stack and balance-of-plant. The system was designed for dual-fuel operation using both natural gas (NG) and liquefied petroleum gas (LPG). An adiabatic pre-reformer was employed in a fuel processing system to convert C2+ hydrocarbons in the fuel into CH4-rich gas which was further processed in a main reformer to produce H2-rich gas for the SOFC stack. The SOFC system was operated for 350 h under thermally self-sustaining condition, and on-load fuel switching from NG to LPG was carried out during the operation. The system performance was not significantly affected by NG/LPG composition ratios and the performance was stable during continuous operation in NG or LPG.  相似文献   

14.
Biogas (60%-CH4, 40%- CO2) is a potential source of renewable energy when used as energy feedstock for solid oxide fuel cells (SOFC), but releases biogenic CO2 emissions. Hybrid SOFC performance can be affected by fuel composition and reformer performance. Biohythane (58%-CH4, 35%-CO2 and 7% H2) can be a better alternative providing balance between energy and biogenic emissions. Biohythane performance is studied for a 120 kW SOFC stack using ASPEN process model and compared with other feed stocks. This work is the first to study and report on the application of biohythane in SOFC systems. Biohythane was found to produce less biogenic CO2 emissions and 6% less CO at the reformer than biogas. Comparisons show that biohythane provides better efficiencies in hybrid SOFC systems. Sensitivity studies recommends operation of stack with biohythane at Steam to Carbon Ratio (STCR) = 2.0, i = 200 mA cm−2 and UF = 0.85 respectively.  相似文献   

15.
A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.  相似文献   

16.
We have developed a solid oxide fuel cell (SOFC) stack with an internal manifold structure. The stack, which is composed of 25 anode-supported 100-mm-diameter SOFCs, provided an electrical conversion efficiency of 56% (based on the lower heating value of methane, which was used as a fuel) and an output of 350 W when the fuel utilization, current density, and operating temperature were 75%, 0.3 A cm−2, and 1073 K, respectively. The electrical efficiency and the output were maintained for 1100 h. The cell voltage fluctuation was ±2% for 25 cells. The relationship between average cell voltage and current density in the 25-cell stack was as almost the same as that in the 1- and 10-cell stacks, which suggests that our stack provides almost the same cell performance regardless the number of the cells.  相似文献   

17.
Fuel processing system which converts hydrocarbon fuel into hydrogen rich gas (by stream reforming, partial oxidation, auto-thermal reforming) needs high temperature environment (600-1000 °C). Generally, anode off gas or mixture of anode off gas and LNG are used as input gas for a fuel reformer. In order to constitute efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristics of fuel reformer burner. In this study, lean flat flame using the ceramic porous burner was analyzed numerically and experimentally. Burning velocity of anode off gas calculated by CHEMKIN simulation was 51.8 cm, which was faster than that of LNG having 40.63 cm/s at the stoichiometric ratio because of high composition of hydrogen in anode off gas. As composition of LNG in mixture of anode off gas + LNG is increased, the burning velocity decreases and in the other hand the adiabatic temperature increases. CO, NOx were measured below 50 ppm in operating load range of the reformer. Blue flame pattern was found as stable flame region for design of fuel reformer and anode off gas flame was maintained in blue flame pattern at equivalence ratio 0.55-0.62 under 1-5 kW power range.  相似文献   

18.
A solid oxide fuel cell (SOFC)–polymer electrolyte fuel cell (PEFC) combined system was investigated by numerical simulation. Here, the effect of the current densities in the SOFC and the PEFC stacks on the system's performance is evaluated under a constant fuel utilization condition. It is shown that the SOFC–PEFC system has an optimal combination of current densities, for which the electrical efficiency is highest. The optimal combination exists because the cell voltage in one stack increases and that of the other stack decreases when the current densities are changed. It is clarified that there is an optimal size of the PEFC stack in the parallel-fuel-feeding-type SOFC–PEFC system from the viewpoint of efficiency, although a larger PEFC stack always leads to higher electrical efficiency in the series-fuel-feeding-type SOFC–PEFC system. The 40 kW-class PEFC stack is suitable for the 110 kW-class SOFC stack in the parallel-fuel-feeding type SOFC–PEFC system.  相似文献   

19.
Theoretical study was carried out to investigate the possible improvement of SOFC performance by using a non-uniform potential operation (SOFC-NUP) in which the operating voltage was allowed to vary along the cell length. Preliminary results of a simple SOFC-NUP with a cell divided into two sections of equal size in term of range of fuel utilization (Uf) indicated that the SOFC-NUP can offer higher power density than an SOFC with uniform potential operation (SOFC-UP) without a reduction of the electrical efficiency. In this work, voltages and section splits were optimized to obtain the maximum power density of the SOFC-NUP. At the optimum splits (Sp,1 = 0.55 and Sp,2 = 0.45), the power density improvement as high as 9.2% could be achieved depending on the level of electrical efficiency. It was further demonstrated that the increase in the number of separated section (n) of the cell could increase the achieved maximum power density but the improvement became less pronounced after n > 3.  相似文献   

20.
A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号