首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 258 毫秒
1.
Q235钢中夹杂物演变规律和生成机理分析   总被引:1,自引:0,他引:1  
 为了更好地控制Q235钢中非金属夹杂物的种类和数量,提高钢的冲击韧性,采用自动扫描电镜分析了Q235钢中非金属夹杂物在LF精炼、中间包和连铸坯中成分和形貌的演变规律。采用FactSage热力学软件对钢中各类夹杂物的生成机理进行了分析。研究发现,钢中非金属夹杂物的演变规律为均相的SiO2-MnO夹杂物→均相的SiO2-Al2O3-MnO-TiOx夹杂物→双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物→多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。样品冷却过程中均相的SiO2-MnO夹杂物发生相变析出纯SiO2导致在LF精炼初期钢中出现双相SiO2-MnO类夹杂物。加入的硅钙钡合金中铝含量较高,导致液态夹杂物在钢液中析出MgO·Al2O3,以及在LF出站钢样品中出现双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物。含钛的夹杂物在连铸坯凝固冷却过程会析出纯的Ti3O5,并且钢中还会析出MnS析出相,因此连铸坯中存在多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。  相似文献   

2.
焦魁明 《钢铁》2020,55(12):39-45
 为了探究镁处理对40Cr铝镇静钢中夹杂物的影响,在120 t钢包内进行了镁处理工业试验。采用FactSage热力学软件计算了在试验炉钢水成分条件下夹杂物的稳定区域图,镁处理夹杂物的改质路径为Al2O3→Al2O3+MgO·Al2O3→MgO·Al2O3→MgO+ MgO·Al2O3→MgO+MgS;结合金相显微镜和ASPEX-explorer自动扫描电镜分析了镁对40Cr铝镇静钢中夹杂物的形态、尺寸及成分的影响。结果表明,镁处理后,铸坯中夹杂物尺寸及数量较未加镁的试样有明显减少,尺寸主要分布在0~3 μm,夹杂物密度和夹杂物的长宽比明显减小;钢中夹杂物等效直径为0~3 μm的比例大于未添加镁的,这说明镁处理对40Cr铝镇静钢中夹杂物有弥散化及形貌控制的效果。镁处理后的40Cr铝镇静钢中夹杂物主要为MnS包裹MgO·Al2O3为核心的复合夹杂物,而对比炉钢中夹杂物主要为MnS、Al2O3-MnS以及钙铝酸盐类夹杂物。  相似文献   

3.
杨光  杨文  张立峰 《钢铁》2022,57(12):66-78
 钙处理广泛应用于铝镇静钢中非金属夹杂物的改性,但在工业实践中的改性效果差别很大。为了探究钙处理效果差异的原因,通过工业试验和热力学计算研究了铝镇静钢钙处理前后非金属夹杂物的演变,并讨论了钙处理改性夹杂物的影响因素。结果表明,浇铸末期钢液中的T[O]和T[N]质量分数分别为0.002 9%和0.003 9%。精炼前期钢中夹杂物Al2O3质量分数达90%以上,钙处理后,钢液中钙质量分数快速增加至0.002 5%,同时夹杂物中CaO质量分数由钙处理前的4%迅速增加到23%,Al2O3质量分数由钙处理前的82%降低至70%,夹杂物由团簇状Al2O3转变为球形的Al2O3-CaO复合夹杂物,夹杂物平均成分靠近液相区。由于二次氧化,浇铸时钢中的T[O]和T[N]含量升高,夹杂物的尺寸和数密度增加,因此,需要加强钢液的保护浇铸。在连铸与轧制过程中,夹杂物中CaO质量分数由中间包中的20%增加至轧材中的37%,Al2O3质量分数由中间包内的77%降低至56%,夹杂物的平均成分向液相区移动,但夹杂物类型不发生改变,仍为球形的钙铝酸盐。通过热力学计算得到本研究中试验钢种夹杂物“液态窗口”对应的钙质量分数为0.001 1%~0.002 8%,此外钢液成分对钙处理的“液态窗口”影响很大。随着钢液中T[O]含量升高,“液态窗口”变宽,但所需喂钙量增加;随着钢液中T[S]含量增加,“液态窗口”变窄;钢液中的T[Al]含量对“液态窗口”无明显影响。  相似文献   

4.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

5.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

6.
对超低碳IF钢钛合金化后的非金属夹杂物进行了分析,研究发现钛合金化后的夹杂物主要为Al2O3和Al?Ti?O夹杂物,没有发现纯TiOx夹杂物。钢中生成的Al?Ti?O复合夹杂物从形貌上均可分为七种类型,四种具有Al2O3外层,另外三种无Al2O3外层。钛合金化后,钢中瞬态生成了大量无Al2O3外层的Al?Ti?O夹杂物,随后夹杂物表面生成Al2O3外层,导致有Al2O3外层的Al?Ti?O夹杂物数量比例逐渐增加至78.0%。热力学计算结果表明,随着钢中钛含量的增加,夹杂物的转变顺序为固态Al2O3→液态Al?Ti?O→固态Ti2O3。确定了Al?Ti?O夹杂物的生成机理过程分为两步:精炼过程钛合金化后,当钢液局部区域的钛的质量分数高于0.42%时,[Ti]与钢液反应瞬态生成Al2O3?TiOx或TiOx;随着精炼过程中钛元素的混匀,含TiOx夹杂物被钢中[Al]还原,Al2O3?TiOx和TiOx夹杂物逐渐转变,在夹杂物表面生成Al2O3。   相似文献   

7.
 大型夹杂物对钢材的加工性能、力学性能和耐腐蚀性能等产生十分有害的影响。用电解萃取法研究了钙处理钢中大型球状/棒状夹杂物的性质,通过对大型球状/棒状夹杂物形貌的扫描电镜观察和元素成分能谱分析,指出钢中的大型球状/棒状夹杂起源于呈团簇状的铝脱氧产物Al2O3。大量小颗粒Al2O3夹杂组成尺寸较大的夹杂团簇,在钢包内复杂流场作用下形成球状或棒状。钢液在钙处理过程中,变性充分的夹杂物形成了低熔点的铝酸钙,在钢液凝固后形成致密的球状夹杂物;变性不充分的夹杂外形仍然保留Al2O3夹杂颗粒形貌。钙处理使Al2O3夹杂变性所需的w([Ca])/w([Al])主要受钢液中硫质量分数影响。铝酸钙对钢液中的硫有较强的吸收溶解能力,在浇铸过程中,随着钢液温度下降,铝酸钙吸收的硫以CaS夹杂形式从基体中饱和析出。  相似文献   

8.
为了研究GCr15轴承钢浇铸过程MgO·Al2O3夹杂物形成原因,以改善钢的可浇性,对LF结束、RH结束、中间包冲击区、中间包浇铸区进行夹杂物全流程分析。LF结束夹杂物主要为镁铝尖晶石,并含有少量钙铝酸盐夹杂物。RH真空处理后镁铝尖晶石夹杂物被高效化去除,钢液中仅剩少量低熔点和高熔点钙铝酸盐夹杂物,中间包浇铸时可以在钢液中检测到许多MgO·Al2O3夹杂物。采用不含氧化镁的中间包覆盖剂和铝质中间包内衬,在不改变连铸其他工艺参数条件下,中间包MgO·Al2O3夹杂物数量并没有得到显著降低,中间包钢液中仍然可以检测到许多MgO·Al2O3夹杂物,这说明中间包钢-渣-耐火材料间的反应并不是MgO·Al2O3夹杂物的生成原因。向铁质提桶取样器中加入成分以SiO2、Cr2O3、Fe2O  相似文献   

9.
为了研究铝脱氧不锈钢开浇过程中二次氧化对钢水洁净度和夹杂物演变的影响,实现钢中夹杂物的有效控制,分别在LF精炼出站、开浇过程中不同时刻取样,采用扫描电镜、ASPEX自动分析仪、热力学计算等不同方法研究了铝脱氧不锈钢中夹杂物的形貌、成分、数量和尺寸分布,确定了铝脱氧不锈钢开浇过程中夹杂物的演变行为和对应机理。研究结果表明,开浇过程钢中氧氮质量分数、夹杂物数密度变化规律类似,20 min时分别增加至7.4×10?5、0.0674%、17.1 mm?2,此后随着浇铸过程进行逐渐降低;LF精炼出站时钙处理改性夹杂物效果较好,其类型主要为CaO?Al2O3?SiO2?MgO,开浇过程中二次氧化降低了钙处理操作的作用效果,20 min时夹杂物类型转变为MnO?Al2O3?SiO2?CaO复合夹杂物,浇铸约60 min时,连铸过程中钢水的洁净度基本达到稳定,此时夹杂物类型重新转变为CaO?Al2O3?SiO2?MgO;二次氧化使得钢液中氧质量分数较高,促进了MnO?Al2O3-SiO2?CaO夹杂物的生成,而钢中大尺寸的CaO?Al2O3?SiO2?MnO?(MgO)夹杂物主要通过夹杂物间的碰撞聚合形成;凝固过程中随着温度的降低,促进了MgO?Al2O3尖晶石相和CaO?2MgO?8Al2O3相的析出,提高了夹杂物中Al2O3组分的含量。   相似文献   

10.
为了研究钇对E36船板钢中夹杂物成分和形貌的影响,对钇处理后E36船板钢中典型夹杂物进行热力学计算,并通过扫描电镜及能谱仪对钇处理前后E36船板钢中夹杂物进行检测分析,观察典型夹杂物形态和尺寸。结果表明,未添加稀土钇的E36船板钢主要为长条状MnS夹杂物;添加稀土钇后,钢中夹杂物主要为球状或类球状的含钇复合夹杂物。当钢中钇质量分数为0.007 8%时,夹杂物主要为球状或类球状的Y2O2S夹杂物和Y2O3夹杂物;当钢中钇质量分数增加至0.037 7%时,夹杂物改性为球状或类球状Y2O2S夹杂物、YS夹杂物和Y2O3夹杂物。  相似文献   

11.
研究了140 t LD-LF-RH-CC流程冶炼超低氧钢时精炼过程铝脱氧钢中夹杂物的变化。试验钢出钢过程加足够的铝脱氧,以尽快降低钢液中溶解氧。为使Al2O3转变为钙铝酸盐夹杂,选用CaO-Al2O3精炼渣系,渣中含3.00%~8.42%SiO2。结果表明,精炼时钢液中夹杂物的变化趋势为:纯Al2O3→尖晶石夹杂→CaO-Al2O3-MgO复合夹杂物,炉渣中8.42%SiO2炉次夹杂物转变慢于3.00%SiO2炉次;当炉渣CaO/Al2O3为1.60时,钢中夹杂物大多转变为低熔点CaO-Al2O3-MgO复合夹杂。精炼渣的成分控制应为(%):55~60CaO,35~40Al2O3, 5~10MgO。  相似文献   

12.
在分析"120 t LD→LF→RH→150 mm×150 mm连铸坯→线材轧制"工艺流程生产的弹簧钢55SiCrA的基础上,应用Factsage热力学计算软件进行热力学计算,对精炼工艺进行优化研究.结果 表明:精炼渣系中含SiO241%~ 46%、CaO 36%~41%、Al2O30%~3%、MgO 10%,渣碱度0...  相似文献   

13.
王章印  姜敏  王新华 《钢铁》2022,57(2):63-72
冶炼Q345D钢时由于夹杂物导致的探伤不合格情况时有发生,为了进一步去除和控制钢中非金属夹杂物,通过工业试验研究了"LF精炼→RH真空精炼→钙处理→软吹→连铸"工艺中的夹杂物生成及演变规律,并通过热力学计算优化钙处理工艺.结果 表明,转炉炉后及LF进站时采用铝强脱氧,夹杂物主要为Al2O3,LF精炼过程采用高碱度、强还...  相似文献   

14.
通过LF精炼和连铸过程钢水和炉渣取样,对3炉60钢冶炼各个阶段的T[O]显微夹杂物的数量、尺寸及类型的变化进行了系统研究。结果表明,在LF进站时,3炉60钢中T[O]为0.007 0%左右;从LF进站→钙处理后→软吹结束→中间包浇注→铸坯,3炉60钢中T[O]总体呈现缓慢降低的趋势,其铸坯中T[O]降到0.003%以下。LF进站时,3炉60钢中夹杂物以硅锰脱氧产物SiO2-Mn0-(Al2O3)复合夹杂为主;经钙处理后,其钢中夹杂物转变为CaO-SiO2-Al2O3-Mg0系复合夹杂,该复合夹杂物的主要成分为CaO+MgO 20%~40%,SiO2 20%~40%,Al2O3 30%-50%。由于中间包浇注过程钢液存在明显二次氧化,导致60钢中间包内钢水T[O]和二次氧化产物SiO2-MnO-(Al2O3)夹杂数量明显增加。  相似文献   

15.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

16.
采用扫描电镜观察了含钛焊丝钢中夹杂物的形貌与组成,重点分析了冶炼过程中夹杂物的形成和演变规律。结果表明,LF进站前的夹杂物主要类型为球形的SiO2-Al2O3复合夹杂物,其尺寸在6 μm左右;在LF精炼中,SiO2-Al2O3型夹杂物转变为不规则椭球形SiO2-Al2O3-CaO型夹杂物,其尺寸为5~10 μm。且随着精炼的进行,夹杂物的数量密度由LF进站前的131.81变成最终出站时的42.84个/mm2。在钢水精炼期间,夹杂物成分由最初的w(Al2O3)<20%的区域向CaO含量升高的区域移动,Al2O3的质量分数为20%~35%;LF精炼结束后的夹杂物类型除了SiO2-Al2O3-CaO外,还存在较多的近球形SiO2-Al2O3-CaO-MgO与形状不规则的SiO2-Al2O3-CaO-MgO-TiOx系夹杂物。另外,在铸坯中的复合氧化夹杂物的外层还发现有TiN夹杂物析出。夹杂物成分最终在铸坯中停留在w(Al2O3)<25%的区域,数量密度降低到27个/mm2左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号