首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prototype of a novel silica gel–water adsorption chiller is built and its performance is tested in detail. The experimental results show that the refrigerating capacity (RC) and COP of the chiller are 7.15 and 0.38 kW, respectively, when the hot water temperature is 84.8 °C, the cooling water temperature is 30.6 °C, and the chilled water outlet temperature is 11.7 °C. The RC will reach 6 kW under the condition of 65 °C hot water temperature, 30.5 °C cooling water temperature and 17.6 °C chilled water temperature. The results confirm that this kind of adsorption chiller is an effective refrigerating machine though its performance is not as fine as the prediction results. Also it is well effectively driven by a low-grade heat source. Therefore, its applications to the low-grade heat source are much attractive.  相似文献   

2.
3.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

4.
The performance of a two-stage adsorption chiller with different mass allocation between upper and bottom beds has been investigated numerically. It is found that the chiller can be driven effectively by the waste heat of temperature 55 °C with the heat sink at environment temperature. Results show that cooling capacity can be improved with the optimum allocation of adsorbent mass to the bottom beds than that to the upper beds. The improvement in Coefficient of Performance (COP) values, however, is less significant. It is also seen that the improvement in cooling capacity is more significant for the relatively higher heat source temperature. It is shown that the cooling capacity can be improved up to 20% if the heat source temperature is 80 °C and the average outlet temperature is fixed at 7 °C.  相似文献   

5.
A newly developed adsorption water chiller is introduced and tested. In the new adsorption refrigeration system, there are no refrigerant valves, the problem of mass transfer resistance resulting in pressure drop along refrigerant passage in conventional systems when methanol or water is used as refrigerant can be absolutely solved. Silica-gel–water is used as working pair and mass recovery-like process is adopted in order to use low temperature heat source ranging from 70 to 85 °C effectively. The experiment results demonstrate that the chiller (26.4 kg silica-gel in each adsorber) has a cooling capacity of 2–7.3 kW and COP ranging 0.2–0.42 according to different evaporating temperatures. Based on the experimental tests of the first prototype, the second prototype is designed and tested; the experimental data demonstrate that the chiller performance has been greatly improved, with a heat source temperature of 80 °C, a COP over 0.5 and cooling capacity of 9 kW has been achieved at evaporating temperature of 13 °C.  相似文献   

6.
We experimentally show that for the same heat exchanger inventory allocation, a four-bed adsorption chiller delivers a 12% higher ultimate cooling capacity than its two-bed counterpart. In addition it delivers a significantly improved quality of instantaneous cooling than a two-bed chiller at the same cooling capacity. The COP-enhancing feature of a passive heat recovery scheme that does not involve additional pumping action or valves is experimentally proven. It improves the COPs of a two-bed chiller and a four-bed chiller by as much as 38 and 25%, respectively, without any effect on their cooling capacities. The highest COPs achieved with a two-bed and four-bed chillers are 0.46±0.02 and 0.45±0.02, respectively. These are measured at a hot-water inlet temperature of 85 °C, cooling-water inlet temperature of 29.4 °C and chilled-water inlet temperature of 12.2 °C.  相似文献   

7.
The convective thermal wave is part of a patented cycle which uses heat transfer intensification to achieve both high efficiency and small size from a solid adsorption cycle. Such cycles normally suffer from low power density because of poor heat transfer through the adsorbent bed. Rather than attempting to heat the bed directly, it is possible to heat the refrigerant gas outside the bed and to circulate it through the bed in order to heat the sorbent. The high surface area of the grains leads to very effective heat transfer with only low levels of parasitic power needed for pumping. The new cycle presented here also utilises a packed bed of inert material to store heat between the adsorption and desorption phases of the cycle. The high degree of regeneration possible leads to good coefficients of performance (COPs). Thermodynamic modelling, based on measured heat transfer data, predicts a COP (for a specific carbon) of 0.90 when evaporating at 5°C and condensing at 40°C, with a generating temperature of 200°C and a modest system regenerator effectiveness of 0.8. Further improvement is possible. Experimental heat transfer measurements and cycle simulations are presented which show the potential of the concept to provide the basis of a gas-fired air conditioner in the range 10–100 kW cooling. A research project to build a 10-kW water chiller is underway. The laboratory system, which should be operational by June 1997, is described.  相似文献   

8.
An experimental investigation of the performance of a micro-combined cooling, heating and power (CCHP) system is described. The natural gas and LPG-fired micro-CCHP system uses a small-scale generator set driven by a gas engine and a new small-scale adsorption chiller, which has a rated electricity power of 12 kW, a rated cooling of 9 kW and a rated heating capacity of 28 kW. Silica gel–water is used as working pair in the adsorption cooling system. The refrigeration COP of the adsorption chiller is over 0.3 for 13 °C evaporation temperature. The test facility designed and built is described, which supplies better test-rig platform for cooling, heating and power cogeneration. Experimental methodology of this system is presented and the results are discussed. An energetic analysis of micro-CCHP system is performed as well. The overall thermal and electrical efficiency is over 70%.  相似文献   

9.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

10.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

11.
This article presents the transient modelling for a two-bed, activated carbon fiber (ACF)–ethanol adsorption chiller. This innovative adsorption chiller employs pitch based ACF of type A-20 as adsorbent which is a fibrous adsorbent having the advantages of fast adsorption rate, high porosity and ease of handling when compared with granular adsorbents and powdered adsorbents. Ethanol is used as refrigerant as it has no harm to environment, it is a non-toxic substance, moreover, ethanol has comparatively higher vapor pressure even at low temperature. This innovative system utilizes effectively low-temperature waste heat sources of temperature between 60 and 95 °C along with a coolant at 30 °C. We have found that, regardless of the initial mass distribution, the ACF–ethanol adsorption chiller is able to achieve the same cyclic-steady-state within three cycles or 1890 s.  相似文献   

12.
Energy and exergy models for ideal adsorption cycles with isothermal beds and no mass recovery are developed to predict the limits to COP enhancement using thermal regeneration. The models are applied to compare the performance of zeolite–water and silica gel–water adsorbent–refrigerant pairs over a range of maximum bed temperatures. The thermodynamic consistencies of several alternate adsorption property assumptions are quantified. Differences in adsorption characteristics between zeolite–water and silica gel–water result in a significantly larger potential to enhance COP by implementing thermal regeneration for zeolite–water. Based on COP, the zeolite–water pair is preferred when both thermal regeneration and a high temperature thermal energy source (>150 °C) are used, while the silica gel–water pair is preferred when thermal regeneration is not used and/or a low temperature thermal energy source (<100 °C) is used.  相似文献   

13.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

14.
A multi-bed regenerative adsorption chiller design is proposed. The concept aims to extract the most enthalpy from the low-grade waste heat before it is purged into the drain. It is also able to minimise the chilled water temperature fluctuation so that downstream temperature smoothing device may be downsized or even eliminated in applications where tighter temperature control may be required. The design also avoids a master-and-slave configuration so that materials invested are not under-utilised. Because of the nature of low-grade waste heat utilization, the performance of adsorption chillers is measured in terms of the recovery efficiency, η instead of the conventional COP. For the same waste heat source flowrate and inlet temperature, a four-bed chiller generates 70% more cooling capacity than a typical two-bed chiller. A six-bed chiller in turn generates 40% more than that of a four-bed chiller. Since the beds can be triggered into operation sequentially during start-up, the risk of ice formation in the evaporator during start-up is greatly reduced compared with that of a two-bed chiller.  相似文献   

15.
The performance of a solid sorption icemaker is investigated. CaCl2/activated carbon was used as compound adsorbent and ammonia was employed as adsorbate. The influence of operating conditions (cooling water temperature, mass recovery and heat pipe heat recovery, etc.) on the mass of ice, SCP (specific cooling power) and COP (coefficient of performance) was experimentally assessed. At the desorption temperature of 126 °C, cooling water temperature of 22 °C, ice produced temperature of −7.5 °C, 40 s of mass recovery and 2 min of heat pipe heat recovery, the mass of ice, SCP and COP values are 17.6 kg/h, 369.1 W/kg and 0.2, respectively.  相似文献   

16.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

17.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   

18.
A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m−3), the heating production (MJ m−3) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent–refrigerant pair and heat flows. The simulation results of 26 various activated carbon–ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 °C to 200 °C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 °C; the cooling production is about 66 MJ m−3 (COP = 0.45) and 151 MJ m−3 (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m−3 (COP = 1.50).  相似文献   

19.
In this paper, a transient model of a silica gel–water adsorption chiller, which is developed in Shanghai Jiao Tong University (SJTU), is developed in order to simulate the evaporating, condensing, and adsorption temperature. Furthermore, this model is verified by a series of experiments. The theoretical studies and experimental data show that the coefficient of performance (COP) is influenced significantly by the variation rates of the heat source temperatures. The results also show that when this chiller is driven by solar energy, a buffer tank should be adopted in the system in order to get better performance when solar insolation is low, and should not be utilized when solar insolation is high, otherwise low COP will be gotten for the reason of the consumption of high electric energy.  相似文献   

20.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号