首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
本文采用数值模拟方法,分析了低强匹配对接接头2种拘束条件、5种屈服强度匹配系数的焊接残余应力。结果表明,低强匹配接头焊根处的三向残余拉应力较小,对静载强度影响不大;焊趾处的三向残余拉应力较大,对疲劳强度和冷裂倾向有不利影响。自由状态的纵向残余应力和两端约束状态的横向残余应力,焊缝金属屈服强度每降低25MPa,其残余应力减少约11MPa。  相似文献   

2.
高强钢低匹配焊接接头应用性能研究   总被引:1,自引:1,他引:0  
本文采用低匹配焊条材料焊接了高强度钢材,对其焊接接头硬度、强度、抗弯性能、韧性和抗爆性能进行了综合试验研究,研究结果表明,对于屈服强度高达1,000 MPa的钢,其低匹配焊接接头如果采用常规焊缝余高控制工艺,将出现以下不利状况:(1)无余高焊缝金属承受横向拉应力,在母材及HAZ拘束下首先屈服时,发生低延性破坏;(2)有余高焊接接头在弯曲应力及弯曲、拉伸复合作用下,焊接接头易出现焊缝首先塑变破裂的低应力失效现象。其根本原因为焊接接头软质焊缝区塑性变形抗力的不足。此类破坏发生时,钢板尚未充分塑性变形,从承受应力水平和吸收能量能力来看,这将导致焊接接头系统的服役能力大为降低,因此提高低匹配焊接接头焊缝区塑性变形抗力变得极为重要。利用第三强度理论分析了低匹配焊接接头变形特点,并进行了此类接头焊缝余高的特殊设计,获得和传统等强匹配等效的焊接接头,即在服役状态下,确保焊缝金属不先于母材发生塑变集中而失效。  相似文献   

3.
结构钢焊接匹配性研究进展   总被引:2,自引:1,他引:1  
对结构钢焊接的高强匹配和低强匹配两种技术路线的发展进行了综述。在焊缝金属具有足够韧性的情况下,高强匹配能利用焊缝金属的高强度降低位于焊缝中裂纹的扩展驱动力、从而有利于焊接接头抗断性能的提高;随着结构钢强度的提高,焊接冷裂纹敏感性增大、焊缝韧性降低,采用焊接裂纹敏感性相对较低、焊缝金属塑韧性相对较高的低强匹配焊接技术能较好的控制焊接冷裂纹的产生并保证接头的抗断性能。  相似文献   

4.
本文通过四点弯曲试验以及数值模拟方法对爆炸焊接的LY12/Al/LY12层合材料中纯铝中间层在不同界面强度错配比条件下裂端应力场及韧脆转变行为进行了研究。结果表明:在双侧硬铝约束下,界面强度错配比增加对裂端应力三轴度及其分布具有显著影响,裂端前沿应力三轴度的提高对中间纯铝层韧脆转变起主导作用,在一定应力三轴度及最大主拉应力条件下,裂端前沿将发生脆性解理启裂。  相似文献   

5.
利用新型数字激光动态焦散线试验系统和落锤冲击加载平台,以缺陷端部曲率为单一变量,将孔状缺陷和裂纹缺陷纳入同一个试验研究体系。研究了冲击荷载下,含不同端部曲率中央缺陷的PMMA条形试件的三点弯曲动态断裂过程,断裂破坏经历三个阶段:前期为冲击应力波作用下,试件下边界裂纹的起裂与扩展;中期为裂纹在缺陷处的应力释放和停滞;后期为落锤自重作用下,缺陷端部的起裂与试件贯穿。在相同的试验条件下,不同端部曲率的缺陷对前期裂纹起裂与扩展基本没有影响;缺陷端部曲率越大,中期缺陷处停滞时间越短,并得出二者之间的近似函数关系;后期缺陷端部起裂时的应力强度因子随着缺陷端部曲率的增大呈现出先减小后增大的变化趋势。  相似文献   

6.
Ti-23Al-14Nb-3V合金氩弧焊接头的显微组织及其力学性能   总被引:6,自引:1,他引:5  
研究了预热对Ti-23Al-14Nb-3V合金焊接性,特别是对消除氩弧焊冷裂纹的作用以及对接头显微组织和力学性能的影响。结果表明,焊前预热可有效降低该合金的冷裂倾向。经预热处理后,焊缝区的结晶层状线消失,热影响区的硬度峰得到缓和,整个焊缝的显微硬度分布趋于均匀,但焊缝区的枝晶发生粗化,热影响区有所扩大。焊件接头的拉伸试验表明,预热可使焊缝区的接头强度系数增加,但无论预热与否,接头强度均低于母材强度,且不显示宏观塑性。  相似文献   

7.
采用有限元数值模拟的方法研究AgCuTi钎焊紫铜/Al_2O_3陶瓷/不锈钢复合结构的形变和残余应力分布情况,并对模拟结果进行实验验证。结果表明:残余应力主要分布在接头区,并且该区形变较小。陶瓷端的残余应力对接头性能影响较大,由于线膨胀系数差异过大,不锈钢陶瓷侧易产生裂纹缺陷,接头倾向于在该区域断裂,紫铜侧陶瓷端TiO反应层的形成导致该区域裂纹的出现,降低了接头的性能。研究各应力分量对最终残余应力的贡献,结果显示环向应力和轴向应力在陶瓷端所产生的拉应力是造成接头强度降低的主要因素。接头拉剪实验表明,接头主要在靠近不锈钢侧的陶瓷端断裂,验证了模拟结果的准确性。  相似文献   

8.
铁素体管线钢的分层裂纹及其对断裂的影响   总被引:1,自引:0,他引:1  
通过对针状铁素体管线钢缺口根部三维应力状态的有限元分析和不同形式的断裂实验,研究了管线钢分层裂纹产生的条件及其对断裂性能的影响.结果表明裂纹或缺口根部的三维应力状态是产生分层裂纹的必要条件,材料的强度分布影响分层裂纹的形式和方向.分层裂纹均为主裂纹扩展前材料中的弱界面在垂直该弱界面的拉应力作用下产生的,其数量和方向受裂纹端部三维应力场和材料的强度分布状态控制.分层裂纹面上的应力为零,分层裂纹有一定的间距.在断裂过程中产生的分层裂纹使裂纹或缺口根部的构形发生改变,从而对裂尖的应力状态和材料的断裂性能产生巨大的影响.穿透裂纹体的分层裂纹使其有效厚度减小,表面裂纹体的分层裂纹与裂纹扩展方向垂直.在断裂过程中产生分层裂纹需要消耗更多的能量、降低裂端三维应力约束、有效厚度降低或裂尖钝化.这些因素均使断裂扩展更加困难,而使材料韧性得到提高.  相似文献   

9.
通过2219铝合金TIG焊接接头不同区域的微区拉伸试验以及母材在热循环过程中不同温度下的拉伸试验,获得了相应的屈服强度和抗拉强度,建立了基于温度、温度历史及应变强化效应的接头软化模型。将此软化模型应用到TIG焊接接头残余应力的有限元模拟中,并将应力模拟值与X射线衍射应力实测值进行对比。结果表明,与常规模型相比,软化模型中的残余应力分布水平出现了不同程度的降低,此外,残余应力在焊缝附近区域、起弧端与收弧端区域及横向分布上下降幅度较为明显。与实测值相比,应用接头软化模型计算得到的焊接残余应力分布与之更为接近,提高了残余应力的计算精度,验证了接头软化模型的有效性。  相似文献   

10.
目的 对0.8 mm厚的Ti6Al4V钛合金和2 mm厚的AA6060铝合金薄板进行脉冲激光焊接,分析异种轻合金激光焊接裂纹产生的机理及界面结合机理。方法 采用扫描电镜、EDS能谱以及显微硬度计等微观表征分析方法,对焊接接头的形貌特征、成分以及显微硬度进行分析,探索焊接接头处裂纹产生的原因。结果 钛/铝脉冲激光焊接性较差,接头存在严重的裂纹缺陷,裂纹多集中在焊缝与铝母材交界处以及焊缝中心区域位置,主要以热裂纹为主;接头焊缝可能存在大量的Ti-Al金属间化合物以及少量未熔的钛,其界面层主要成分推测为层状TiAl和外层锯齿状的TiAl3;接头整个焊缝区域的平均显微硬度为HV0.1420,其硬度水平远远高于焊缝两侧铝合金母材,也高出钛合金母材很多。结论 钛铝金属间化合物使钛铝焊接接头焊缝区脆性增大,另外接头焊缝区存在较大的组织应力、热应力、拉压应力、拘束应力等复杂应力,致使焊缝内存在较严重的裂纹缺陷。  相似文献   

11.
Fracture criterion of the J-integral finds wide application in the integrity evaluation of welded components, but there exist some confused problems such as the dependence of the fracture toughness on the strength mis-matching and specimen geometry which need to be clarified. It is rough and unsuitable to attribute the variation of J-integral fracture parameter simply to the effect of mechanical heterogeneity. In the present paper, a two-dimensional finite element method is employed to analyze the distribution and variation of crack tip field of welded joints with different strength mis-matching in four kinds of specimen geometry, and then the validity of J-dominance in welded joints is investigated. It is found that the crack tip field of mis-matched joint is different from that of either the weld metal or base metal of which the joint is composed, but it is situated between those of weld metal and base metal. Under the plane strain, there is obvious difference in stress triaxiality for different strength mis-matched joints. The validity of J-dominance in welded joint can not be obtained by comparing whether the stress triaxiality meets that required by the HRR solution because of the existence of mechanical inhomogeneity. By ascertaining if the stress triaxiality of welded joint near the crack tip is dependent of specimen geometry, the conclusion can be arrived at: for plane stress the validity of J-dominance is valid, whilst for plane strain the validity of J-dominance is lost. Based on the above, attempt has been made to point out that the influence of mechanical heterogeneity on the fracture toughness of weldment arises from the variation of constraint intensity-crack tip stress triaxiality. Compared with the effect of mechanical heterogeneity on the stress triaxiality, the losing of validity of J-dominance in mis-matched joint under plane strain may play a more critical role in the variation of J-integral fracture parameter of weldment.  相似文献   

12.
《Engineering Fracture Mechanics》2004,71(7-8):1177-1199
The effect of strength mis-matched welded joints on the local stresses in the neighbourhood of a crack has been investigated, in the context of ideally plastic materials, using the finite element method and slip line field analysis. Several key parameters affecting the local stresses have been identified: degree of strength mis-match, M, slenderness of the weld, (Wa)/H, and crack location within the weld. Loading geometry effects have been considered by investigating tension and bending specimens. The analyses were performed for plane strain and plane stress conditions.It is found that, for the case when the crack locates within the weld metal, the crack tip stress triaxiality depends not only on M but also on (Wa)/H. The effect of (Wa)/H is worth noting, as its effect on the crack tip stress triaxiality is restricted to certain ranges of (Wa)/H, which in turn depend on M, geometry and loading. For an interface crack, the stress triaxiality at the softer side is higher than that for a crack in a specimen wholly made of the softer material; the reverse is true for the harder side. This explains the ductile failure behaviour of cracks observed in experiments: the crack path tends to deviate into the softer material in spite of its higher toughness. Another notable point is that, under sufficiently high under-matching conditions, a second peak stress ahead of and remote from the crack tip may occur, the magnitude of which depends on M and (Wa)/H. Present findings are believed to be vital for design and defect assessment of welded joints with conventional welding as well as advanced welding techniques.  相似文献   

13.
The fully plastic solutions of welded centre-cracked strip for plane stress problem were carefully investigated with the fully plastic finite element method. It was introduced for assessing the fracture mechanics parameters of weldment with mechanical heterogeneity that there existed an equivalent yielding stress and equivalent strain hardening exponent in the vicinity of crack tip keeping the assessment of fracture mechanics parameters of weldment in the same way as the homogeneous material. The equivalent yielding stress and equivalent strain hardening exponent of various matched weldment were computed and the effect of weld metal width were calculated and discussed on equivalent yielding stress and equivalent strain hardening exponent near crack tip. The engineering approach was given for estimating the fracture mechanics parameters of weldment with mechanical heterogeneity in elastic-plastic range.  相似文献   

14.
The new model of stress triaxiality, subjected to plane strain condition under mixed‐mode (I + II) loading, at the yield loci of the crack tip, has been formulated using unified strength theory. It evaluates critical values of triaxiality for various convex and non‐convex failure criteria, unlike the existing model. It shows the effects of Poisson's ratio and intermediate principal stress for materials whose strength in tension and compression is either equal or unequal. Further, on this basis, the crack initiation angles are predicted for various crack inclinations and compared with those obtained from other fracture criteria. The plastic zone shapes supplement the results. Critical yield stress factor, a significant parameter at the crack tip got lowered as the difference among the three principal stresses reduced to a minimum. The crack initiation angles obtained from the model showed good agreement with those obtained from G‐, S‐, and T‐criterion.  相似文献   

15.
For 10 mm thick smooth-sided compact tension specimens made of a pressure vessel steel 20MnMoNi55, the interrelations between the cohesive zone parameters (the cohesive strength, Tmax, and the separation energy, Γ) and the crack tip triaxiality are investigated. The slant shear-lip fracture near the side-surfaces is modeled as a normal fracture along the symmetry plane of the specimen. The cohesive zone parameters are determined by fitting the simulated crack extensions to the experimental data of a multi-specimen test. It is found that for constant cohesive zone parameters, the simulated crack extension curves show a strong tunneling effect. For a good fit between simulated and experimental crack growth, both the cohesive strength and the separation energy near the side-surface should be considerably lower than near the midsection. When the same cohesive zone parameters are applied to the 3D model and a plane strain model, the stress triaxiality in the midsection of the 3D model is much lower, the von-Mises equivalent stress is distinctly higher, and the crack growth rate is significantly lower than in the plane strain model. Therefore, the specimen must be considered as a thin specimen. The stress triaxiality varies dramatically during the initial stages of crack growth, but varies only smoothly during the subsequent stable crack growth. In the midsection region, the decrease of the cohesive strength results in a decrease of the stress triaxiality, while the decrease of the separation energy results in an increase of the triaxiality.  相似文献   

16.
The present work investigates problems: (1) How are the plastic strain and the stress (triaxiality) re-distributed after a short crack initiated, extended and blunted at the pre-crack tip? (2) How do the above changes put a crucial effect on the triggering of the cleavage fracture? Based on the previous observations of configuration changes and fracture surfaces of pre-crack tips, Finite element method (FEM) simulations of a short crack initiated, extended and blunted at a pre-crack tip and calculations of distributions of stress, strain and triaxiality are carried out for 3PB pre-cracked HSLA steel specimens tested at -130°C. The results reveal that: as long as the fatigue pre-crack is only blunted, in its vicinity a region where the accumulated strain is sufficient to nucleate a crack, and a region where the stress (triaxiality) is sufficient to propagate a crack nucleus are separated by a distance. The nucleated crack cannot be propagated and the cleavage fracture cannot be triggered. While a short crack produced at the fully blunted fatigue pre-crack, the strain retains, the stress (triaxiality) is rebuilt. An initiated and significantly extended and then blunted short crack makes a tip configuration, which on one hand is much sharper than that of the fully blunted original pre-crack tip, on other hand is wide enough to spread its effects into the high stress covered region. This sharpened crack tip configuration re-builds a ‘sharper’ distribution of stress (triaxiality) and makes two regions metioned above closer. Finally the two regions overlap each other and a cleavage crack can be initiated and propagated at a distance ahead of the blunted fatigue pre-crack.  相似文献   

17.
Accurate yield surfaces of plane strain single-edge-cracked specimens having shallow as well as deep cracks are developed using finite element limit analyses and monotonic interpolation functions. Fully plastic shallow crack configurations are classified based on certain aspects of the yield surfaces. Relationships between incremental plastic crack tip and crack mouth opening displacements and incremental load point displacement/rotation are obtained for a wide range of relative crack depths and loading ratios. Fully plastic crack-tip fields for a sufficiently deep crack in a single-edge cracked specimen are examined to provide the stress triaxiality and the angular orientation of flow line at the crack tip in terms of the remotely applied tension-to-bending ratio. Evidence for fully plastic crack-tip stress fields consisting of an incomplete Prandtl fan and a crack plane constant state region is discussed.  相似文献   

18.
The recently introduced Engineering Treatment Model (ETM) relates the crack tip opening displacement (CTOD) to the applied load or strain for work hardening materials. The formalisms of ETM were applied to a transverse welded wide plate with a crack in the weld metal. Both the base material and the weld metal were regarded as power law hardening materials. It can be shown that differences in the plastic properties of the weld metal and base material, respectively, significantly affect the CTOD. Quantitative relations are given for the CTOD of a crack in the weld metal normalised by the CTOD a crack in the base material would exhibit. An important result is that the characterisation of a non-matching weld metal by the matching factor M only is not sufficient since work hardening plays an important role.From this, requirements for minimum weld metal toughness can be established in order to make the toughness performance of the weldment no worse than that of the base material.  相似文献   

19.
The effects of load and geometry on the stress structure of a Mode I three-dimensional crack are investigated by means of finite element method. The functions of plastic deformation and stress triaxiality constraint, during the failure process, are then analyzed. It is found that three regions, namely the plane strain similar zone ZI, the plane stress similar zone ZIII and the transition layer between them ZII, exist in front of the crack tip; three-dimensional deformation behavior is different from that in two-dimensional states even in the ZI and ZIII zones. It is also revealed that the failure form and position of a Mode I three-dimensional crack will be determined by both plastic strain and stress triaxiality.  相似文献   

20.
In this paper, according to the nuclear pressure steel A508-III, the effect of strength mis-matching on the fracture behavior was analyzed by fracture mechanics test and the crack tip stress field of three-point bend specimen was analyzed by using finite element analysis method (FEM). The fracture of heat-affected zone (HAZ) was emphasized especially. The results of FEM show that if the under-matching weld was used, the opening stress and stress triaxiality in the vicinity of crack tip would increase for weld-crack specimen, and would reduce for HAZ-crack specimen. This tendency was confirmed by the test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号