首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Austempered ductile iron (ADI) exhibits a favourable combination of strength and toughness, and has been used as a substitute for quench-tempered or carburise-quenched steel. A characteristic feature of bainite transformation of cast iron, as opposed to carbon steel, is that precipitation of carbide is suppressed by the high concentration of silicon. Thus, a favourable structure, consisting of bainitic ferrite and retained austenite without carbide, can be provided by the optimum austempering treatment. Such microstructure and the mechanical properties of the iron are significantly affected by the conditions of the austempering treatment and the chemical composition. In this study, several grades of ductile iron were austempered under various conditions. The relationship between the impact strength, the quantity of retained austenite and the isothermal transformation curve was investigated. The stability of the retained austenite is considered important, because ADI contains a large amount of retained austenite which contributes to the improvement of ductility and toughness and which may transform to martensite when held at low temperature or subjected to stress. In this study, the stability of the retained austenite at low temperatures was examined by holding or stressing to establish the relations between transformation and temperature, stress and strain.

When the austempering time is short, the untransformed austenite partially transforms to martensite during air cooling, due to the lower carbon content, resulting in lower impact strength. As the austempering time increases, the untransformed austenite is stabilised by carbon-enrichment and there is little transformation to martensite, resulting in a large amount of retained austenite and higher impact strength. When the austempering time becomes much longer, the carbon-enriched austenite decomposes, presumably to bainitic ferrite and carbide, decreasing impact strength. In increasing the silicon content, precipitation of carbide in bainite is suppressed and both the maximum impact value and the content of retained austenite increase. The decreasing rates after the maxima through an additional isothermal holding becomes smaller.

By holding at temperatures down to –40°C, the decrease in retained austenite and the increase in hardness are both small. The retained austenite is stable under stress lower than that required to cause plastic deformation. Compressive stress hinders the martensitic transformation, because the transformation is accompanied by volume expansion.  相似文献   

2.
采用X射线衍射仪、光学显微镜、扫描电镜、硬度测试、冲击试验和磨损试验等手段,研究了淬火和回火工艺对Cr26型过共晶高铬铸铁组织、硬度、冲击吸收能量和耐磨性的影响。结果表明,经980~1100 ℃淬火和250~600 ℃回火后的Cr26过共晶高铬铸铁的组织主要是马氏体基体,M7C3碳化物和少量奥氏体。初生碳化物为六边形,共晶碳化物和回火生成的二次碳化物呈短棒状。总体碳化物含量随淬火温度升高略有上升。随回火温度的升高,硬度先降低后增加,超过500 ℃回火时再次降低,而冲击吸收能量先增加后降低,超过350 ℃回火时再次上升。不同温度淬火时,对应最大耐磨性的回火温度不同。980、1050 ℃淬火时,再经250 ℃回火获得最高的耐磨性,而1100 ℃淬火时,再经350 ℃回火获得最大耐磨性。  相似文献   

3.
上世纪70年代,通过奥氏体等温淬火开发出抗拉强度大于1000MPa、伸长率大于15%的高强度、高韧性等温淬火球铁。利用正交试验法,研究了等温淬火工艺参数对等温淬火球铁显微组织及硬度的影响。结果发现,在设计的试验工艺内全部可以得到以针状铁素体和富碳奥氏体为基体的等温淬火球铁组织;在等温淬火工艺中,等温淬火温度对试样硬度影响最为显著,其次是奥氏体化温度与奥氏体化时间,而等温淬火时间对于试样硬度的影响最小。  相似文献   

4.
分别采取普通等温淬火、两级等温淬火、等温淬火+回火3种热处理工艺对较高温度下球墨铸铁(成分为质量分数%;3.80C,2.46Si,0.25Mn,0.026S,0.036P,0.051Mg,0.022RE)的组织和性能进行了研究,发现热处理工艺带变窄或消失,得到基体中不含奥氏体的贝氏体球墨铸铁。这种球墨铸铁虽然塑韧性较差,但具有较高的强度、硬度和疲劳极限,而且耐磨性和切削性良好。  相似文献   

5.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

6.
Abstract

The machinability of an austempered ductile iron with a suitable chemical composition for heavy sections has been assessed. Austempering heat treatment was carried out at three temperatures, 300, 340 and 375°C, after austenitising at 870°C for 100?min. Drilling tests, tool wear and surface roughness measurements were used to evaluate the machinability. Drilling operation failure, severe tool wear and the poorer surface roughness of the specimens austempered at lower temperatures indicated that austempering at higher temperatures clearly resulted in better machinability. The machinability of testpieces austempered at 375°C, which contained higher fractions of retained austenite, was superior to that of testpieces autenitised at lower temperatures, indicating that hardness is an important factor in assessing machinability in addition to high carbon austenite content.  相似文献   

7.
研究了奥贝球铁、下贝球铁及与其基体组织相同的钢的滑动磨损性能。实验结果表明 :在一定条件下 ,石墨对等温淬火球铁耐磨性无补而有损。由于奥贝球铁的转折载荷随摩擦速度的提高而增大 ,当转速为 980r/min ,载荷 >6 8 6N时 ,等温淬火球铁的耐磨性优于钢  相似文献   

8.
研究了等温淬火温度对奥贝球铁(ADI)水脆化行为的影响,水附着条件下不同等温淬火温度处理的ADI均发生水脆化行为,抗拉强度和伸长率显著降低;但随着等温淬火温度升高,ADI的水脆化程度降低。高强度的ADI、淬火回火球铁和珠光体球铁均发生水脆化行为,而铁素体含量高的铸态球铁和铁素体球铁无明显的水脆化行为。  相似文献   

9.
研究了含Mo轴承钢的相变规律及热处理制度对其组织和性能的影响,运用SEM和XRD表征了其显微组织,绘制了动态CCT曲线,测试了其硬度、力学性能和耐磨损性能。结果表明,由于钢中含有Mo,推迟了珠光体组织转变,当冷速≥4 ℃/s时冷却过程只发生马氏体相变;淬火+低温回火后,钢的抗拉强度和维氏硬度分别为1850 MPa和785 HV;而经贝氏体等温淬火后钢的抗拉强度和硬度分别达到2160 MPa和735 HV。淬火+低温回火后残留奥氏体的体积分数约为12.68%,而贝氏体等温淬火后约为3.88%。残留奥氏体含量的降低,有助于提高轴承钢的尺寸稳定性。  相似文献   

10.
The variation in the austempered microstructure, the volume fraction of retained austenite, Xλ, the average carbon content of retained austenite, Cλ, their product XλCλ and the size of bainitic ferrite needles with austempering temperature for 0.6% Cu alloyed ductile iron have been investigated for three austempering temperatures of 270, 330, and 380 °C for 60 min at each temperature after austenitization at 850 °C for 120 min. The austempering temperature not only affects the morphology of bainitic ferrite but also that of retained austenite. There is an increase in the amount of retained austenite, its carbon content, and size of bainitic ferrite needles with the rise in austempering temperature. The influence of austempering time on the structure has been studied on the samples austempered at 330 °C. The increase in the austempering time increases the amount of retained austenite and its carbon content, which ultimately reaches a plateau.  相似文献   

11.
Abstract

In this study, two ductile irons were prepared: the first cast was unalloyed with a chemical composition of 3·65C–2·58Si–0·31Mn–0·045Mg, and the second one was alloyed with 0·5%Cr. The solidification rate was changed by casting four different cast thicknesses of 5, 10, 20 and 30 mm. The austempering treatment was carried out by austenitising the samples at 900°C for 1 h and then rapidly quenched into two different salt baths with temperatures of 325 and 375°C for 1 h each. The austempering temperature of 325°C showed higher mechanical properties than of 375°C. An addition of 0·5%Cr enhanced the tensile strength and hardness on the account of impact toughness. Maximum abrasion resistance was reported for the iron containing 0·5%Cr and austempered at 325°C for the cast thickness of 5 mm. This is due to the formation of fine ausferrite matrix and existing Cr carbides imbedded in the matrix that resist well the abrasion resistance. Minimum abrasion resistance was obtained for the unalloyed iron austempered at 375°C due to the formation of coarse ausferritic structure and existence of a higher amount of retained austenite.  相似文献   

12.
奥氏体—贝氏体合金球铁磨球的研制与应用   总被引:1,自引:0,他引:1  
研究了一种新型磨球材质———奥贝合金球铁,采用合金化和等温淬火处理,可以获得下贝氏体、残余奥氏体、少量马氏体基体组织的球铁。该材质的磨球在不同工况下装机考核。结果表明,其耐磨性明显优于低合金球铁和锻钢。它的推广应用具有显著的综合效益。  相似文献   

13.
利用贝氏体等温淬火工艺在Dievar钢中制备不同体积比例的贝/马复相微观组织,通过对显微组织、宏观/微观硬度、磨面形貌、磨屑和磨损率的分析进一步研究了贝/马复相Dievar热作模具钢的高温摩擦磨损性能并探讨其磨损机制。结果表明,Dievar钢中下贝氏体含量随等温淬火保温时间的延长而增加,其中保温3、5、10 min时下贝氏体体积占比分别为32%、45%、63%。贝/马复相试样相比于传统油淬试样具有更高的回火抗性,不同等温试样硬度值均高于传统油淬试样硬度值。同等磨损条件下,等温淬火Dievar钢相较于常规热处理Dievar钢耐磨性更加优异。在400~600℃高温摩擦磨损试验条件下,Dievar钢表面氧化物为Fe2O3和Fe3O4。Dievar钢400~500℃高温磨损机制为磨粒-轻微氧化磨损;随着温度升高,氧化物颗粒尺寸变大,磨粒磨损加剧。当温度升至600℃时,常规油淬试样磨损机制为磨粒-氧化磨损,以磨粒磨损为主;而等温淬火试样磨损机制则以氧化磨损为主。  相似文献   

14.
CARBIDEFORMATIONINAUSTEMPEREDDUCTILEIRONALLOYEDWITHNICKELANDCOPPER¥FANZhikang(Xi'anUniversityofTechnology,China)SMALLMANRE(Un...  相似文献   

15.
The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325℃and 400℃after austenitizing at 875℃and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃and austempered at 325℃remained unchanged, whilst it reduced in samples austenitized at 950℃and 875℃for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.  相似文献   

16.
通过SEM、XRD、硬度、韧性以及三坐标测量机等测试,探究了常规热处理和回火后稳定化处理对冷作模具钢DC53力学性能和尺寸稳定性的影响。结果表明:DC53钢在稳定化处理前后的组织均为回火马氏体+少量残留奥氏体+碳化物。通过400 ℃×2 h 附加回火的稳定化处理方式后,试验钢的硬度和冲击吸收能量分别为61.5 HRC和19.7 J,同时材料的尺寸稳定性进一步提高。回火后组织稳定性的提升、材料内部残余应力值的降低以及残留奥氏体的陈化是改善试验钢尺寸稳定性的主要原因。  相似文献   

17.
奥贝球铁磨粒磨损性能的研究郭新立,孟祥康,刘治国,董鄂(南京大学)(南京理工大学)奥贝球铁是新一代的球墨铸铁,与普通球铁相比,奥贝球铁具有较高的强度、韧性、抗点蚀疲劳、弯曲疲劳和耐磨性能,被视为70年代以来铸铁冶金的重大突破 ̄[1、4]。其应用目标之...  相似文献   

18.
In this study, the effect of the microstructure and mechanical properties of austempered high-carbon (0.9 %C) high-silicon (2.3 %Si) cast steel were investigated. The specimens were austenitised for 60 min. at 900 °C, and austempered at 260 °C, 320 °C, and 380 °C for periods of time ranging from 30 min to 240 min. After receiving this heat treatment, the mechanical properties were measured using both a tensile test and hardness test. To analyze the microstructure, an optical microscope was used and an X-ray diffraction (XRD) analysis was carried out. In this study, high carbon high silicon cast steel without graphite and with higher tensile strength (1300 MPa to 2200 MPa) and elongation (∼25 %), when compared to austempered ductile cast iron (ADI), was developed. When the austempering temperature was at 260 °C, the microstructures were low ausferrite, but at 380 °C, an upper ausferrite structure was formed. As the austempering temperature increased from 260 to 380 °C, the ultimate tensile strength and hardness decreased, but the elongation and retained austenite volume fraction increased. In addition, the microstructures were coarser.  相似文献   

19.
Abstract

Castings are very widely used for critical friction and wear applications. As operating conditions are becoming more arduous, greater demands will be placed upon the casting industry to meet the requirements of the designer. This study was undertaken to evaluate the wear resistance of 2.5% Ni, 0.4% Mo austempered ductile iron, having a hardness of HB 270 and a high amount of retained austenite, in the particular context of a railway braking application. Pin-wear test data is presented, comparing wear behaviour of this ADI grade with that of a pearlitic grey cast iron which is currently employed as a brake block material in Iranian passenger trains, and with a 3% P cast iron which was developed in the UK.1  相似文献   

20.
朱震宇  吴志方  吴润 《金属热处理》2022,47(10):154-159
采用光学显微镜(OM)、扫描电镜(SEM)和材料表面综合性能测试仪等研究了回火温度对NM500低合金高强度耐磨钢的显微组织、力学性能和耐磨性能的影响。结果表明,NM500钢经淬火+回火处理后得到典型的回火马氏体组织,回火温度的升高使得固溶在马氏体板条中的过饱和碳原子逐渐析出,而碳化物聚集长大导致钢的硬度和低温冲击性能明显下降。NM500钢在200 ℃回火后的硬度和-20 ℃低温冲击吸收能量分别为513 HBW和44.40 J,耐磨性能最佳。低温回火(200、250 ℃)时少量细小弥散的过饱和碳原子析出改善了钢的耐磨性,300 ℃及以上回火时聚集粗化的短棒状渗碳体会降低基体的硬度,导致钢的耐磨性不断降低,磨损机制由磨粒磨损向粘着磨损转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号