首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以偏钨酸铵、醋酸钴、有机碳为原料,去离子水为溶剂,采用喷雾干燥-煅烧-球磨-连续还原碳化新工艺制备纳米WC-6Co复合粉。采用氮气吸附法测定粉末比表面积,XRD、SEM分别分析粉末物相和形貌,研究球磨工艺对钨钴复合氧化物粉末性能的影响以及连续还原碳化过程中粉末比表面积的变化。结果表明,在连续还原碳化前进行球磨,可有效破碎粉末;适当增大球料比或延长球磨时间,可使粉末破碎效果更好,粒度分布更均匀,当球料比为10∶1、球磨时间为240min时,粉末破碎、分散效果最佳,比表面积为11.62m2/g;球磨后的钨钴复合氧化物粉末在连续还原碳化过程中发生团聚烧结、预合金化,生成平均粒度为80nm的WC-6Co复合粉。  相似文献   

2.
机械球磨制备纳米WO3粉末的研究   总被引:1,自引:0,他引:1  
采用机械球磨湿法工艺制备了纳米级WO3粉末.研究了球磨时间、球料比、固液比等球磨参数对粉末粒度的影响:球磨时间和球料比对粉末粒度影响很大,但过久延长球磨时间或增大球料比并不能起到进一步细化的作用,反而会增加WC杂质的引入量;过高或过低的固液比都不利于WO3粉末的细化.为得到纳米级且纯度较高的WO3粉末,降低WC的含量,经反复实验得到最佳工艺条件为:球料比1:1,固液比1:0.5,球磨时间48 h.  相似文献   

3.
采用机械球磨湿法工艺制备了纳米级WO3粉末。研究了球磨时间、球料比、固液比等球磨参数对粉末粒度的影响:球磨时间和球料比对粉末粒度影响很大,但过久延长球磨时间或增大球料比并不能起到进一步细化的作用,反而会增加WC杂质的引入量;过高或过低的固液比都不利于WO3粉末的细化。为得到纳米级且纯度较高的WO3粉末,降低WC的含量,经反复实验得到最佳工艺条件为:球料比l:l,固液比1:0.5,球磨时间48h.  相似文献   

4.
高能球磨合成纳米WC-Co复合粉末的特性   总被引:2,自引:0,他引:2  
采用变转速多次循环高能球磨工艺在32min制备出了平均晶粒尺寸约为25nm的纳米WC-10CO-0.8VC-0.2Cr3C2(重量分数)复合粉末,并用化学元素分析、XRD,TEM,DTA对纳米WC—Co复合粉末的特性进行了表征和分析。结果表明,变转速多次循环高能球磨工艺制备的纳米WC—CO复合粉末,化学成分合格,杂质含量低,球磨效率高;球磨过程是一个晶粒逐渐细化的过程,同时也是一个晶格畸变逐渐增加、粉末体系能量逐渐增大的过程;球磨得到的WC-Co纳米复合粉末颗粒形貌基本为球形,粒径分布较宽,颗粒中存在着一些团聚体,平均颗粒尺寸约为50nm;纳米WC-10Co-0.8VC-0.2Cr3C2(wt%)复合粉末的共晶点约为1280℃。纳米复合粉末中W,Co,V,Cr元素分布均匀弥散。  相似文献   

5.
采用机械合金化法制备了Fe基预合金粉(FeCuNiSnCo粉末),通过热压烧结制备胎体材料,对制备的Fe基预合金粉末及其胎体性能进行表征,利用正交实验研究了球料比、球磨转速、液固比、球磨时间等对粉末松装密度和胎体材料硬度、抗弯强度的影响,确定最优工艺,并对胎体材料显微组织进行观察。结果表明:在球磨过程中,粉末颗粒经过重组、变形、破碎和合金化,粉末形貌发生了改变,影响了粉末松装密度;球磨转速和球料比是影响胎体材料硬度和强度的主要因素;综合分析最佳工艺参数为:球磨时间6 h,球磨转速400 r·min-1,球料比4:1,液固比0.5:1.0。  相似文献   

6.
采用机械合金化法制备了纳米TiC增强Ti基复合粉末,通过XRD、SEM、TEM和EDS分别表征粉末的物相、形貌、晶体结构和元素分布,探索球磨转速、球料比及球磨时间对复合粉末物相形貌的影响。结果表明:当球磨转速达到300 r/min以上、球料比达到20∶1以上时,球磨效率无明显差异。球磨时间达到10 h,粉末中TiC物相明显;继续延长球磨时间至20 h,得到纳米级TiC增强相。在300 r/min球磨转速、20∶1球料比、20 h球磨时间条件下,可得到纳米TiC增强Ti基复合粉末,粉末中部分区域呈非晶态,大量纳米TiC颗粒弥散分布于粉末中。  相似文献   

7.
采用高能球磨对WC粉和MgO粉进行球磨制备纳米WC-MgO复合粉末。为获得晶粒尺寸较小的纳米复合粉末,运用正交实验设计结合BP神经网络优化球磨工艺参数。以磨球直径、球磨转速和球料比为正交实验设计因子,每个因子各取4个水平,以WC-MgO复合粉末的晶粒尺寸为目标因子,编制3因素4水平正交设计表。结合BP神经网络强大的自学习和函数拟合功能,以正交设计表中3因素为网络输入层,以晶粒尺寸为网络输出层,建立BP神经网络优化模型,并通过该模型进行预测和优选,得到最佳的高能球磨工艺参数。即磨球直径10mm、球磨转速324r/min、球料比6.45:1。此时,WC-MgO复合粉末的晶粒尺寸为18.51nm,与预测值18.23nm的相对误差为1.51%。  相似文献   

8.
本研究采用机械合金化方法制备氧化物(Al2O3)弥散强化镍基高温合金预合金粉末.通过改变球磨工艺参数,分析了球磨转速和球料比对机械合金化过程的影响,对球磨后的粉末进行SEM分析、XRD分析、粒度测试和松装密度测试,得出最佳的球磨工艺参数。实验结果表明:Al2O3 弥散强化镍基高温合金机械合金化粉末尺寸随球磨转速的增加先减小后增大,当球磨转速为400rmp,球料比为20∶1时,合金粉末有较高的松装密度和较小的粉末粒度。  相似文献   

9.
对TiH2/SiC混合粉末进行搅拌球磨,然后通过压制与真空烧结制备金属钛,研究球料比、球磨转速及球磨时间等工艺参数对球磨粉末粒度与显微组织的影响,并通过对烧结钛的组织观察与分析,研究此工艺制备超细晶钛的可行性。结果表明:适度提高转速或延长球磨时间有利于TiH2粉末的高效细化并提高粉末粒度分布的集中度;在球磨过程中没有发现TiH2分解和形成其他新相的现象;随球磨粉末的中位径D50和粒度跨度值ψ减小,烧结金属钛的晶粒度变得更小、更均匀。在600r/min转速下搅拌球磨8h后的TiH2/SiC粉末,在1050℃/3h条件下高真空烧结后得到平均晶粒度在5μm以下的超细晶钛。  相似文献   

10.
通过单因素和正交实验系统地研究在机械合金化过程中研磨体、研磨介质及球磨工艺参数等因素对高硅铝合金混合粉末粒径及形貌的影响作用.结果表明:球磨转速对机械合金化后粉末粒径有显著影响,且随着球磨转速的增加,粉末的中粒径逐渐增大和粒度的分布范围逐渐变宽、均匀性越差;在本实验条件下,采用聚氨酯球为研磨体、酒精为研磨介质、球磨时间12 h、球磨转速150 r/min、球料比15∶1条件下进行机械合金化可获得中粒径为5.78 μm且分布均匀的高硅铝合金混合粉体.  相似文献   

11.
球磨参数对制备纳米WO_3粉粒度的影响   总被引:1,自引:0,他引:1  
本文采用机械球磨法制备纳米三氧化钨陶瓷粉末,系统研究了球磨参数对粉末粒度的影响.结果表明,机械球磨法可以制取纯度较高的三氧化钨细粉;球磨时间和球料比以能够使颗粒尺寸趋于稳定的范围时为佳,盲目延长时间、增大球料比起不到细化作用,相反会增加WC杂质的引入.  相似文献   

12.
针对原位自生Al2O3增强钼基复合材料晶粒较大的问题,采用溶胶-凝胶与高能球磨相结合的方法细化复合材料晶粒,并利用SEM、XRD对不同球磨工艺所制备Al2O3/Mo复合粉末及复合材料的组织进行了观察和分析。结果表明:随着球磨时间的延长,Al2O3/Mo复合粉末颗粒由球状变为层片状再成为细小的球状,颗粒大小由约1.5μm细化为约500nm,其中的钼晶粒不断细化;高球料比所得粉末的分散性和破碎细化程度较好;转速提高使得粉末颗粒的尺寸均匀程度降低,且伴有结块现象,不利于粉末的细化。在球料比5∶1、转速300r/min、球磨时间60h条件下获得的复合粉末,经压坯烧结可制备出Al2O3颗粒为纳米级的钼基复合材料。  相似文献   

13.
采用机械球磨工艺,使用扫描电子显微镜(SEM)、激光粒度分析仪(D50)、比表面积测试仪(BET)、振实密度仪(TD)和松装密度(AD)测定装置等测试手段,研究讨论了不同球料比对片状银粉粒度、形貌、比表面积和振实密度等性能的影响,得出了最佳的球料比参数。结果表明,球料比为12.5∶1(质量比)时,可制得平均粒径为5.5μm、松比为2.19g/cm3、比表面积1.10m2/g、振实密度为3.5g/cm3的高振实片状银粉。  相似文献   

14.
为了克服金属陶瓷两相分布不均、界面不润湿和难以烧结致密等难题,采用球磨技术将增强相均匀包裹在基体材料表面,研究包裹型SiO2/Al复合粉体的球磨制备工艺及其烧结性能,提高金属陶瓷的综合性能。结果表明,随着球磨时间的延长,SiO2/Al复合粉体的比表面积先增大后减小,球磨6 h获得的复合粉体比表面积最大,达到8.1 m2·g?1。随着球料比的增大,SiO2/Al复合粉体的比表面积先增大后减小,说明SiO2包裹在Al粉表面的量呈现先增多再减少的趋势。随着球磨转速的增大,SiO2/Al复合粉体比表面积先增大后减小。随着烧结温度的提高,SiO2/Al金属陶瓷表面硬度先增高后降低,在烧结温度为900 ℃时,SiO2/Al金属陶瓷的表面硬度达到最高。球磨时间为6 h,球料比为2:1,球磨转速为360 r·min?1,烧结温度900 ℃可以获得性能较佳的SiO2/Al金属陶瓷。  相似文献   

15.
将原位合成的WC-6Co复合粉末添加到300 L、转速50 Hz滚动球磨中湿磨,添加Co粉、晶粒长大抑制剂、石蜡、酒精,湿磨48 h,卸料、过孔径45 μm筛,采用闭式压力喷雾干燥塔制备得到WC-7Co~WC-15Co混合料粉末,对制备混合料粉末形貌、粒度分布、物相、成分进行分析,结果表明:添加Co粉配成WC-Co混合料,当混合料的Co质量分数超过10%,团聚现象明显增强,团聚颗粒明显增大;随着添加Co粉质量分数增加,混合料中氧质量分数增高,松装密度不断减小.将制备得到的WC-7Co~WC-15Co混合料掺成型剂,挤压成型,低压烧结等工序制备超细YG7X~YG15X硬质合金.研究添加不同Co质量分数WC-6Co复合粉末制备YG7X~YG15X超细硬质合金,Co对制备硬质合金的金相组织、形貌、物理力学性能的影响,结果表明:随着添加Co质量分数增加,制备的超细硬质合金硬度、密度不断降低,抗弯强度和断裂韧性先增大、后减小;制备的超细YG7X硬质合金的硬度最高HV30为2 150,抗弯强度最低为3 200 MPa;制备YG10超细硬质合金的抗弯强度最高为4 950 MPa,断裂韧性最高为11.8 MPa·m1/2.   相似文献   

16.
采用振动球磨法制备Fe-6.5%Si(质量分数)硅钢微粉,试验中对硅钢粉末进行不同球料比、不同球磨时间、干法球磨和湿法球磨制备微粉试验。结果表明:随着球磨时间的延长,颗粒尺寸变细,球磨12h后,颗粒细化速度变慢;加大球料比及延长球磨时间可进一步细化粉末粒度,但对粉末的粒度分布无影响;湿磨比干磨制粉效率高,粒度分布多在小粒级范围内。  相似文献   

17.
采用自行研制的球磨装置对三水铝石矿进行了球磨溶出工艺研究。考察了填充系数、转速、料球比、配矿量和溶出温度等因素对球磨溶出性能的影响,并对球磨溶出矿浆进行了XRD分析。结果表明,三水铝石矿的最佳球磨工艺为:装球量30%、钢弹转速100 r/min、料球比1.2∶1、球磨钢球采用混合球(2~20 mm)1、00 mL母液配矿量25 g、溶出温度150℃。  相似文献   

18.
In the present work, a set of Cu-based powder mixtures containing up to 6 wt% Cr has been processed through mechanical alloying for a range of milling times up to 96 h. The mixtures were processed in a ball mill with ball to powder ratio of 10:1 and the equal numbers of 1 and 2 cm balls. The processed powder mixtures were investigated by scanning electron microscope, optical microscopic equipped with image analyzer, X-ray diffraction technique and micro hardness in order to determine the particles morphology, distribution of chromium, mean crystallite size, lattice parameter and hardness after milling, respectively. Crystallite sizes were measured by Williamson–Hall method and lattice parameters were determined using an extrapolation function. Results show that the powder behavior varies with milling time, and powder composition.  相似文献   

19.
球磨液体介质对Sm(Co,Fe,Cu,Zr)7.4合金粉末粒度的影响   总被引:1,自引:0,他引:1  
在球径、转速和球料比相同的情况下,分别采用溶剂汽油和甲苯作为滚动球磨的液体介质,对Sm(Co,Fe,Cu,Zr)7.4合金粉进行了一系列的试验.测定了2种介质环境下,试样的粒度及氧含量与球磨时间的关系.结果发现,采用溶剂汽油作为液体介质时,较强的静电排斥力有利于球磨过程中粉末颗粒的分散,促进粉末的细化.  相似文献   

20.
球磨条件对机械合金化粉末粒度的影响   总被引:3,自引:0,他引:3  
试验测定了机械合金化过程中能量消耗及粉末粒度、形态与工艺条件的关系。结果表明,在球磨初期,球磨转速越高,粉末粒径越大。在球磨后期,粉末粒度随输入比能量的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号