首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
单面盐冻环境下PVA纤维水泥基复合材料的冻融破坏反映了路面、桥面由于除冰盐造成破坏的工程实际情况。本文通过单面盐冻试验研究PVA纤维掺量、水胶比、粉煤灰掺量对水泥基复合材料抗冻性能的影响,试验结果表明,纤维掺量在0~2%之间时制备的PVA纤维水泥基复合材料,随着纤维掺量的增加抗冻性能增强;水胶比在0.27~0.4之间时制备的PVA纤维水泥基复合材料,随着水胶比的增大抗冻性能减弱;粉煤灰掺量在45%~50%之间时,PVA纤维水泥基复合材料表现出良好的抗冻性能。并用二参数Weibull分布模型分析了PVA纤维水泥基复合材料的冻融损伤,建立了考虑纤维掺量、水胶比、粉煤灰掺量三因素的冻融损伤模型,模型计算值与试验值吻合良好,表明本文建议的模型可用于PVA纤维水泥基复合材料冻融损伤分析,为进一步研究其冻融损伤规律提供参考。  相似文献   

2.
为了提高高韧性纤维增强水泥基复合材料的可持续发展指标,发展绿色环保型高韧性水泥基复合材料,以大掺量粉煤灰为基础,以粉煤灰掺量为参变量,研究不同粉煤灰掺量对高韧性纤维增强水泥基复合材料的流动度、抗压强度和弯曲性能的影响。研究结果表明,在大掺量粉煤灰情况下,随着粉煤灰掺量的增加,复合材料的流动度呈先增长后下降的趋势;抗压强度呈线性降低,且试件破坏时没有出现砂浆剥落现象,抗压破坏属于延性破坏;极限抗弯荷载呈现降低、增加又降低的变化趋势;极限挠度呈下降趋势,弯曲弹性刚度呈增加趋势。  相似文献   

3.
立方体抗压强度和劈裂抗拉强度试验,是研究聚乙烯醇纤维对水泥基复合材料拉压比性能影响的最直接的方法。立方体试件的尺寸为100 mm×100 mm×100 mm,PVA纤维掺量分别为0、0.5%、1.0%、1.5%、2.0%,粉煤灰掺量为30%、50%。试验结果表明,掺入PVA纤维对立方体抗压强度影响不显著,而劈裂抗拉强度则提高了4264%~135.12%,拉压比提高36.82%~134.27%;30%粉煤灰掺量的水泥基复合材料比50%粉煤灰掺量的水泥基复合材料抗压强度高20%以上,但对劈裂抗拉强度影响不明显。PVA纤维水泥基复合材料立方体抗压试块裂缝开展路径较多,不易破碎,抗压韧性显著增强。  相似文献   

4.
为了研究PVA纤维对水泥基复合材料抗氯离子渗透性能的影响,测定了不同掺量的PVA纤维增强水泥基复合材料的电通量。结果表明,PVA纤维增强水泥基复合材料具有明显优于普通水泥基复合材料的抗氯离子渗透性能。掺量0.5%~2.5%的PVA纤维使材料的电通量降低了15.6%~42.2%。根据试验数据,评价了不同纤维掺量的试件的氯离子渗透性,分析了PVA纤维掺量对水泥基复合材料电通量的影响规律,并基于灰色系统理论建立了电通量与PVA纤维掺量之间的函数关系模型。  相似文献   

5.
为研究纳米SiO_2和PVA纤维增强水泥基复合材料的抗冻性能,通过快冻法试验测得了各组试件经冻融循环后的相对动弹性模量,对单掺PVA纤维与复掺纳米粒子和PVA纤维水泥基复合材料的抗冻性能进行了对比,探讨了纳米SiO_2与PVA纤维对水泥基复合材料抗冻性能的影响。结果表明:在一定掺量范围内掺加PVA纤维可以提高水泥基复合材料的抗冻性能,但过大掺量(0.9%)的PVA纤维会对水泥基复合材料的抗冻性产生不利影响;在PVA纤维水泥基复合材料中掺入纳米SiO_2可以明显提高其抗冻性能,在本文试验纳米SiO_2掺量范围内,其抗冻性随着纳米SiO_2掺量的增加不断增强;在掺加2%纳米SiO_2的水泥基复合材料中掺加一定掺量(0.9%)的PVA纤维可以提高水泥基复合材料的抗冻性。  相似文献   

6.
通过对超高韧性纤维增强水泥基复合材料制作的立方体试件、棱柱体试件,进行了抗压、抗折和Ⅰ型断裂试验,研究了不同配合比下各组试块的抗压强度等力学指标与纤维掺量及基体材料强度的关系,研究了荷载与变形的关系、及不同切口高度试件的抗裂性能等.试验结果表明:合理的配合比及最佳PVA掺量能提高纤维增强水泥基复合材料的抗压强度、抗折强度以及抗裂韧度;研究了国产PVA纤维与进口PVA纤维的合理掺量,在相同力学指标的前提下,利用国内PVA纤维造价低的优势,可实现部分代替超高性能水泥基复合材料中的进口PVA纤维,从而达到这种复合材料国产化、本地化的目的.  相似文献   

7.
王睿  张品乐 《混凝土》2024,(2):126-132+141
将钢纤维、国产PVA纤维和日本PVA纤维按照适宜比例进行配制,不同纤维材料性能相互补充、取长补短,可以更好发挥出混杂纤维增强水泥基材料(HFRCC)的力学性能,有利于其成本控制,具有广泛应用前景。通过正交试验极差结果择优和信噪比S/N稳定性择优两种方法分析粉煤灰掺量、水胶比、砂胶比、钢纤维掺量、国产PVA掺量和日产PVA掺量对混杂纤维增强水泥基材料(HFRCC)抗拉强度和抗弯强度的影响规律,对比两种方法的结果,并建立各因素和响应量之间的回归关系,与和易性工程性能相结合,给出HFRCC的最优配合比。结果表明:信噪比S/N稳定性择优方案更加准确和全面。粉煤灰掺量、钢纤维掺量、国产PVA掺量和日产PVA掺量对HFRCC的响应量影响较大,水胶比和砂胶比影响较小;建立数学模型预测和优选配合比,HFRCC抗拉强度最大可以达到6.36 MPa,抗弯强度最大可以达到13.90 MPa,预测值和试验值之间的相对误差绝对值均接近3%,且和易性能较好。研究结果可以为混杂纤维增强水泥基材料(HFRCC)的制备提供依据。  相似文献   

8.
着重介绍从提高钢渣利用率出发,采用"复合化"的技术途径,在以大掺量钢渣粉水泥基材料中掺加聚乙烯醇(PVA)纤维以改善其性能,制成大掺量钢渣粉超高韧性水泥基复合材料。试验中采用控制变量的方法,在高韧性复合材料典型配合比的基础上,选用两组工程常用的水胶比(0.25、0.35),分梯度掺入不同含量的钢渣粉(0~80%);通过抗压强度试验、薄板四点弯曲试验来研究掺钢渣粉高韧性水泥基复合材料的基本力学性能以及裂缝控制能力。结果显示钢渣粉高韧性水泥基复合材料在掺量达到80%时可以表现出较大的韧性特征和裂缝控制能力;同时,从节能减排的角度考虑,也证明了钢渣粉在高韧性水泥基材料中大规模利用的可行性。  相似文献   

9.
刘杰  尹立强  刘曙光  闫长旺  鲁小宇 《混凝土》2023,(3):97-101+105
PVA纤维水泥基复合材料有着显著阻裂能力和拉伸性能,开展了PVA纤维水泥基材料抗折性能的研究。包括PVA纤维水泥基复合材料试件抗折性能试验、其破坏形态与承载力分析、建立与分析了在PVA纤维水泥基复合试件下的拱模型理论、提出新的承载力计算方法。研究得出:PVA纤维水泥基复合材料试件在纤维体积掺量为0.5%、1.0%、1.5%、2.0%时,抗折承载力随着纤维掺量的增加而增加,抗折性能得到显著提升;根据PVA纤维水泥基复合材料试件的不同受力阶段,分3种情况建立平衡方程,为计算抗折承载力提供了依据;建立了拱模型在PVA纤维水泥基复合材料试件下的抗折承载力计算理论,得到抗折承载力计算结果与试验值较为接近。  相似文献   

10.
为了解决传统应变硬化水泥基复合材料(以下简称SHCC)高成本和高水泥用量的问题,用国产PVA纤维和河砂分别全部取代传统SHCC中广泛使用的进口PVA纤维、超细石英砂,并用粉煤灰等质量部分取代50.0%、62.5%、75.0%的水泥,制备了低成本、低碳SHCC,研究了粉煤灰掺量和砂胶比对SHCC力学性能的影响,并用SEM观察了其微观形貌。结果表明:用国产PVA纤维和河砂可以制备出低成本、低碳SHCC;随着粉煤灰掺量的增加,试件的抗压、抗折和拉伸强度降低,但延性提升;随着砂胶比的增加,试件的抗压、抗折强度降低,拉伸强度提高,延性降低。  相似文献   

11.
以初始弯曲韧度比R_(e,p)、弯曲韧度比R_(e,k)作为表征纳米水泥基复合材料弯曲韧性的评价指标,通过9组配合比共27个小梁试件的三分点加载弯曲试验,探究了PVA纤维掺量对普通水泥基复合材料和纳米SiO_2水泥基复合材料弯曲韧性的影响。结果表明,随着PVA纤维掺量的增加,PVA纤维增强普通水泥基复合材料和纳米SiO_2水泥基复合材料的弯曲韧性指标都呈现出先增大后减小的趋势,且均在PVA纤维掺量为1.2%时达到最大值,此时2种水泥基复合材料的荷载-挠度曲线最饱满。  相似文献   

12.
通过对11组聚乙烯醇纤维水泥基复合材料(PVA-ECC)试件的抗压强度、抗折强度及单面盐冻试验,探究粉煤灰掺量和纤维掺量对PVA纤维水泥基复合材料力学性能及抗冻性能的影响。结果表明:抗压强度与抗折强度均随粉煤灰掺量的增加而降低;纤维掺量对抗折强度影响较大,而对抗压强度影响很小。单面盐冻试验中,试件单位面积质量损失与相对动弹性模量损失率均随冻融循环次数增加而增长,粉煤灰掺量为45%~50%、纤维掺量为1.75%时,抗冻性能达到最佳。  相似文献   

13.
通过单轴受压强度和变形特性试验,研究了聚乙烯醇(PVA)纤维体积掺量、粉煤灰及硅灰掺量对高韧性PVA纤维增强水泥基复合材料(PVA FRCC)受压性能的影响;依据测得的抗压强度、弹性模量、泊松比以及单轴受压应力应变全曲线,分别建立了立方体抗压强度与轴心抗压强度以及弹性模量的关系式;利用扫描电镜技术,对高韧性PVA FRCC的微观结构进行了初步研究;基于实测应力应变曲线的特点,提出了单轴受压本构方程,为高韧性PVA FRCC结构非线性有限元分析及结构设计提供了理论依据.  相似文献   

14.
高延性纤维增强水泥基复合材料(ECC)是一种高韧性延性土木工程材料,通过对13组288个ECC试件进行单轴抗压、劈裂抗拉及四点弯曲等试验,分析聚乙烯醇纤维(PVA)掺量、水胶比及粉煤灰掺量对ECC力学性能的影响规律。研究表明:水胶比及粉煤灰掺量是影响其抗压强度的主要因素,增加PVA掺量,ECC抗压强度变化较小,峰值应变值及极限应变值明显提高,峰值后延性较好;随着水胶比增加,ECC抗拉强度及抗弯强度降低,增加PVA掺量可明显提高抗拉及抗弯强度,PVA掺量为2.0%的ECC抗拉强度较基体提高53%,抗弯强度及弯曲韧度系数分别是相应基体的2.8倍及7倍,ECC在各种破坏荷载作用下可保持良好的整体性,未发生脆性破坏。  相似文献   

15.
刘雁宁  张涛  李杉 《混凝土》2022,(1):112-115
对混掺聚乙烯醇纤维(PVA)与12 mm两端直勾型精细钢纤维的水泥基复合材料进行立方体抗压和哑铃试件轴向拉伸试验,分析纤维掺量对混掺纤维水泥基复合材料抗压、抗拉强度和韧性的影响规律。结果表明:混掺精细钢纤维可以提高水泥基复合材料的立方体抗压强度、抗拉强度和韧性;随着精细钢纤维的增加,其抗压强度、抗拉强度和极限拉应变呈先增大后降低的趋势,当精细钢纤维掺量为1.2%时,28 d立方体抗压强度平均值比单掺PVA纤维提高了61.9%;当精细钢纤维掺量为0.8%时,28 d抗拉强度和极限拉应变分别比单掺PVA纤维提高了56.9%和240%。  相似文献   

16.
针对尾矿砂进行了一系列的试验研究,从尾矿砂替代天然砂的比例到掺加不同的纤维,通过得出的数据最终确定了本次论文的数据。论文通过确定尾矿砂的替代天然砂的比例50%,绘制掺加不同纤维的尾矿砂水泥基复合材料的弯曲荷载-挠度曲线并根据曲线研究了尾矿砂PVA纤维水泥基复合材料有关弯曲的力学性能和弯曲韧性。研究表明,该尾矿砂水泥基复合材料在掺加日本纤维具有较国产安徽纤维更好的韧性,但是国产纤维在一定程度上也能达到日本纤维所能达到的优势,并且国产纤维造价低,因此国产纤维在尾矿砂水泥基复合材料中有很好的应用前景。  相似文献   

17.
采用竹炭纤维增强水泥基复合材料以提高其韧性。研究了竹炭纤维掺量对水泥基复合材料力学性能的影响规律,并与聚酯纤维增强水泥基材料进行了对比分析。研究结果表明:竹炭纤维增强水泥基复合材料抗压强度随纤维掺量的增加而降低;抗折强度随竹炭纤维掺量的增加而先增加后降低,竹炭纤维掺量为0.2%时,抗折强度达到最大。竹炭纤维掺量为0.2%时,复合材料韧性最佳。随着龄期增长,竹炭纤维腐蚀程度增加,其增强水泥基复合材料抗折强度降低,韧性亦降低。  相似文献   

18.
对3类不同粉煤灰掺量下形成的聚乙烯醇(PVA)纤维水泥基材料,通过三点弯曲试验测试,研究了PVA纤维水泥基材料的弯曲性能;通过对PVA纤维水泥基材料断裂面处纤维表面、纤维嵌入端和纤维拉断或拔出端的扫描电镜影像分析,研究了PVA纤维-(水泥)基体界面微观结构,揭示了PVA纤维桥接裂缝过程;通过PVA纤维水泥基材料样本抛光表面的荧光影像,量化测定了PVA纤维在基体中的分布.结果表明:掺入粉煤灰后PVA纤维对水泥基材料增强增韧作用增加,高掺量下效果更显著;掺入粉煤灰后裂缝处PVA纤维的桥接应力和纤维-基体界面黏结力降低,随着裂缝的扩展,PVA纤维由短距离滑动转变为长距离滑动,纤维桥接裂缝的效率提高,增强增韧的作用增加;掺入粉煤灰后基体结构更加均匀,PVA纤维分布系数增大,PVA纤维对水泥基材料的增强增韧作用提高.  相似文献   

19.
为研究形状记忆合金(SMA)/聚乙烯醇(PVA)混杂纤维增强水泥基复合材料(SMA/PVA-ECC)的拉伸性能,开展单轴拉伸试验,分析了SMA/PVA-ECC试件的破坏现象、应力-应变曲线及特征参数,比较了SMA纤维掺量及其直径对试件拉伸性能的影响.结果表明:SMA/PVA-ECC试件卸载后残余裂缝宽度显著减小;SMA纤维掺量及其直径对试件拉伸性能影响显著,当SMA纤维直径为0.2 mm、掺量为0.2%时,试件综合拉伸性能最好,其初裂强度、极限拉伸应力及应变较工程水泥基复合材料(ECC)试件分别提高56.4%、23.6%及13.4%.  相似文献   

20.
《混凝土》2016,(3)
粉煤灰掺量替代率在绿色高性能纤维增强水泥基复合材料绿色高性能纤维增强水泥基复合材料中较高,通过试验研究高掺量粉煤灰对绿色高性能纤维增强水泥基复合材料性能的影响表明:粉煤灰对提高高性能纤维增强水泥基材料的和易性效果较好。16组中保水性较好的比例占62.5%。其余6组(37.5%)的试验组虽保水效果较其他12组较差,但仍无离析泌水现象。满足保水性要求;流动度方面,高性能纤维增强水泥基材料随着粉煤灰含量的增加,流动度逐渐增大。16组均满足水泥胶砂流动度大于180 mm的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号