首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用MEVVA源强流离子注入机将银离子注入到马氏体不锈钢表面,注入能量和注入剂量分别为100keV和(0.1~8)×1017ions/cm2。选用革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌研究了银离子注入不锈钢的抗菌性能,电化学法测定了其耐蚀性能,AES分析了不锈钢注入层中主要元素的浓度分布,讨论了注入剂量与不锈钢抗菌性能及耐蚀性能的关系。研究表明:随银离子注入剂量的增加,银在注入层中的峰值浓度变化不大,但分布深度增加,马氏体不锈钢抗菌性能显著提高。在100keV注入能量、8×1017ions/cm2注入剂量条件下,银离子注入马氏体不锈钢后可以使其具有最佳的抗菌性能,但耐蚀性能略有下降。  相似文献   

2.
抗菌处理对含Cu奥氏体抗菌不锈钢组织和性能的影响   总被引:1,自引:0,他引:1  
研究了含Cu奥氏体抗菌不锈钢的两种抗菌处理方法对其组织、抗菌性能、机械性能和耐腐蚀性能的影响。结果表明:不同的抗菌处理影响了抗菌不锈钢基体中富Cu相的析出,低温长时间抗菌处理得到的组织中富Cu相比高温短时间抗菌处理得到的富Cu相更细密,细密的富Cu相对大肠杆菌和金黄色葡萄球菌的抗菌性更好。与304不锈钢相比,含Cu奥氏体抗菌不锈钢经抗菌处理后对机械性能没有产生明显的影响,耐腐蚀性也没有明显的下降。  相似文献   

3.
目的 在304不锈钢表面制备DLC薄膜,并探究其在1 mol/L NaOH、3.5%NaCl、1 mol/L H2SO4溶液中的摩擦磨损行为。方法 通过非平衡磁控溅射设备(UPD650)制备DLC薄膜。采用扫描电子显微镜、拉曼光谱仪,对DLC薄膜的微观结构及磨斑、磨痕进行表征。使用划痕仪和纳米压痕仪,分别测试DLC薄膜的结合力、硬度和弹性模量。使用接触角测量仪测试1 mol/L NaOH、3.5%NaCl、1 mol/L H2SO4溶液和去离子水在304不锈钢和DLC薄膜表面的润湿角。采用CSM摩擦试验机研究304不锈钢和DLC薄膜的摩擦磨损行为。利用动电位极化评价304不锈钢和DLC薄膜的耐腐蚀性能。结果 304不锈钢表面制备的薄膜厚度约1.95 μm,结合力为37 N左右,硬度和弹性模量分别约为14.7 GPa和191.1 GPa。DLC薄膜在1 mol/L NaOH溶液中的摩擦系数高达0.18,而在3.5%NaCl、1 mol/L H2SO4溶液和去离子水中的摩擦系数低至0.05左右。在1 mol/L NaOH、3.5%NaCl、1 mol/L H2SO4溶液中,DLC薄膜的磨损率比304不锈钢的小2、3个数量级。极化测试结果显示,DLC薄膜在不同介质中的腐蚀电流密度顺序为1 mol/L H2SO4<3.5%NaCl<1 mol/L NaOH。结论 沉积的DLC薄膜具有良好的机械性能和耐腐蚀性能,能够很好地改善304不锈钢在1 mol/L NaOH、3.5%NaCl、1 mol/L H2SO4溶液中的摩擦磨损性能。  相似文献   

4.
为了增强钛金属双极板的耐腐蚀性能,通过多弧离子镀膜技术在钛基双极板表面镀一层TiN,对薄膜的表面形貌,晶体结构与耐腐蚀性能之间的关系进行研究.结果表明:镀有TiN膜样品的耐腐蚀性能比未镀膜样品的有明显提高,其腐蚀电流密度最低可达201 μA/cm2.测试其动电位极化曲线和恒电位极化曲线发现,样品的耐腐蚀性能与薄膜的晶体结构以及表面颗粒和孔洞有密切的关系.适当的晶体择优取向有利于提高样品的耐腐蚀性能,而表面的颗粒和孔洞对样品的长期耐腐蚀性有很大影响.通过能谱分析发现,腐蚀后的样品表面发生了氧化.  相似文献   

5.
采用直流磁控溅射的方法在304不锈钢表面上制备金属钛薄膜,溅射5min后,通过扫描电镜(SEM)观察薄膜厚度为15μm。对比研究了304不锈钢镀膜前和镀膜后在FeCl3溶液中的腐蚀速率,通过显微镜观察两者在腐蚀之后的组织形貌,结果表明,通过在表面制备金属膜的方法(镀膜时间至少5min)可以有效提高304不锈钢在氯离子环境下的耐腐蚀性能。  相似文献   

6.
在严苛海洋环境下,传统单一的Ti掺杂类金刚石薄膜(DLC)无法满足减摩耐磨及耐腐蚀性能的要求,仍须进一步探索。为促进DLC薄膜在严苛海洋环境下的应用,采用中频磁控溅射技术在316L不锈钢上制备Ti/TiN/TiCN/Ti-DLC复合薄膜。通过SEM、拉曼光谱、XPS、纳米压痕测试、摩擦磨损试验及电化学测试等方法,重点研究基体偏压对薄膜结构、力学性能、摩擦性能及耐腐蚀性能的影响规律。结果显示:随着基体偏压从-60V到-120V,薄膜中sp3-C/sp2-C比值逐渐增大,薄膜硬度及弹性模量逐渐增大;薄膜结合力呈现先增大后减小的趋势,在-80 V时达到最大24.5 N;在7 N的法向载荷下,薄膜磨损失效时间先增大后减小,偏压为-80 V时磨损寿命最长;316L不锈钢和所有薄膜的阳极极化曲线都表现出明显的钝化现象,在偏压为-120V时,薄膜的维钝电流密度比316L不锈钢低两个数量级,表现出优异的耐蚀性;薄膜电阻Rf和电荷转移电阻Rct逐渐增大,薄膜的耐腐蚀性能逐渐增强。Ti/TiN/TiCN/Ti-DLC复合薄膜的多层结构和元素掺杂相结合的设计有效提高了316L不锈钢的耐腐蚀性能和减摩耐磨性能...  相似文献   

7.
Zr掺杂类金刚石薄膜摩擦性能及耐腐蚀性能的影响   总被引:1,自引:1,他引:0  
目的改善不锈钢摩擦性能及耐腐蚀性能。方法通过线性阳极层离子源辅助非平衡磁控溅射法,制备了不同Zr含量的类金刚石(DLC)薄膜,采用扫描电子显微镜、拉曼光谱仪、纳米硬度仪、高温销盘磨损仪、电化学工作站,对薄膜的化学成分、显微结构、纳米硬度、薄膜摩擦性能及耐腐蚀性能进行测试研究。结果随着Zr靶功率的增大,Zr含量线性增加。Zr含量从4.9%增加至16.3%时,I_D/I_G增大,薄膜硬度从12.1 GPa逐渐下降至8.4 GPa;Zr含量增大至21.2%时,I_D/I_G减小,薄膜硬度增大至11.4 GPa。涂镀类金刚石薄膜的不锈钢基体比无涂层的不锈钢基体有更低的摩擦系数,更好的耐磨损性能。Zr掺杂DLC薄膜的最小摩擦系数为0.07。Zr含量从4.9%增加至16.3%,DLC薄膜的耐腐蚀性能减弱;Zr含量继续增加,DLC薄膜的耐腐蚀性能增强。当Zr含量不大于11.9%时,沉积Zr掺杂DLC膜的不锈钢基体的耐腐蚀性能比不锈钢基体的更强。结论 Zr含量不大于11.9%时,Zr掺杂类金刚石薄膜既可以有效地改善不锈钢基体的摩擦磨损性能,又可以大幅提高耐腐蚀性能。  相似文献   

8.
采用磁控溅射工艺,在304不锈钢表面沉积CrNx薄膜。采用扫描电子显微镜(SEM)和场发射扫描电子显微镜(FESEM)观察薄膜形貌,采用能谱仪(EDS)和X射线光电子能谱(XPS)分析薄膜的元素组成和化学价态;测试了其接触电阻及耐腐蚀性能。结果表明:薄膜以柱状晶方式生长,主要由Cr2N和Cr组成;在质子交换膜燃料电池电堆的组装力范围内接触电阻降低明显;在模拟电池环境腐蚀溶液中腐蚀电流降低明显,耐腐蚀性能显著增强。  相似文献   

9.
彩色超疏水不锈钢表面的制备   总被引:1,自引:1,他引:0  
目的解决普通彩色不锈钢表面能高、易被污染的缺点,制备既有装饰效果又具有超疏水自清洁性能的彩色超疏水不锈钢表面。方法通过简单的化学蚀刻法在不锈钢表面建立微纳米尺度的二元微结构,在此基础上进一步由铬酸化学氧化法(INCO法)在不锈钢表面生成微纳米结构彩色膜,经全氟硅烷分子修饰后,最终获得低表面能类荷叶粗糙结构。通过着色曲线、扫描电镜、电子能谱分析仪以及接触角测试等手段研究了化学蚀刻前处理对不锈钢着色性能、微观结构、表面浸润性以及耐腐蚀性能的影响。结果蚀刻处理后,着色过程减缓,所着终点颜色有轻微改变,着色后表面保留了微纳米粗糙结构。由全氟硅烷分子修饰后,获得超疏水彩色不锈钢表面,水接触角为152.6°,其耐腐蚀性能较普通彩色不锈钢更为优异。结论成功制备了耐蚀彩色超疏水不锈钢表面。  相似文献   

10.
用射频磁控溅射的方法分别在单晶Si(100)和304不锈钢基底上制备了FeNiCoCrMn高熵合金薄膜,利用EPMA、XRD、SEM和动电位极化测试,确定薄膜的成分并探讨不同基底温度下沉积的薄膜的相结构、膜厚、形貌以及耐腐蚀性能规律。研究表明:高熵合金薄膜的成分与高熵合金靶材的成分一致,组成元素接近等摩尔比,且薄膜成分均匀;基底温度为100、200、300℃沉积的薄膜为非晶结构,基底温度为400、500℃沉积的薄膜为晶体结构;随着基底温度的升高,薄膜的厚度变薄,薄膜表面颗粒越来越大,横截面柱状组织越来越明显;由动电位极化测试的结果得出不同衬底温度沉积的高熵合金薄膜在1mol/L H2SO4溶液中的耐腐蚀性都优于304不锈钢,且随着衬底温度的升高,薄膜的耐腐蚀性能降低,其中100℃沉积的薄膜的耐腐蚀性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号