首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the finite‐time boundedness, stabilization, and L2‐gain for switched positive linear systems (SPLS) with multiple time delays. Using multiple linear copositive Lyapunov functions, sufficient conditions in terms of linear matrix inequalities are obtained for the problems of finite‐time boundedness and stabilization and the design of state feedback controllers for SPLS. Under asynchronous switching, L2‐gain analysis is developed for SPLS under the constraint of average dwell time. Numerical examples are given to illustrate our theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with observer‐based H output tracking control for networked control systems. An observer‐based controller is implemented through a communication network to drive the output of a controlled plant to track the output of a reference model. The inputs of the controlled plant and the observer‐based tracking controller are updated in an asynchronous way because of the effects of network‐induced delays and packet dropouts in the controller‐to‐actuator channel. Taking the asynchronous characteristic into consideration, the resulting closed‐loop system is modeled as a system with two interval time‐varying delays. A Lyapunov–Krasovskii functional, which makes use of information about the lower and upper bounds of the interval time‐varying delays, is constructed to derive a delay‐dependent criterion such that the closed‐loop system has a desired H tracking performance. Notice that a separation principle cannot be used to design an observer gain and a control gain due to the asynchronous inputs of the plant and the controller. Instead, a novel design algorithm is proposed by applying a particle swarm optimization technique with the feasibility of the stability criterion to search for the minimum H tracking performance and the corresponding gains. The effectiveness of the proposed method is illustrated by an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the problem of H output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the problem of finite‐time H control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H finite‐time boundedness of the closed‐loop system. Then, a finite‐time H state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

8.
The incremental gain is proposed as an alternative to the usual gain for designing nonlinear H controllers. Considering a class of plants with Lipschitz nonlinearities and using linear matrix inequalities, a state feedback controller is designed such that the closed‐loop system is exponentially stable in the absence of disturbance inputs and has incremental gain less than or equal to a minimized number in the presence of disturbances as well as model uncertainties. Moreover, a norm‐wise robustness analysis of the proposed technique against nonlinear uncertainties has been accomplished. Our result is verified through stabilization of both certain and uncertain systems in an incremental sense and also input tracking of a chaotic plant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the decentralized H controller synthesis problem for discrete‐time LTI systems. Despite of intensive research efforts over the last several decades, this problem is believed to be nonconvex and still outstanding in general. Therefore, most of existing approaches resort to heuristic optimization algorithms that do not allow us to draw any definite conclusion on the quality of the designed controllers. To get around this difficulty, in this paper, we propose convex optimization procedures for computing lower bounds of the H performance that is achievable via decentralized LTI controllers of any order. In particular, we will show that sharpened lower bounds can be obtained by making good use of structures of the LTI plant typically observed in the decentralized control setting. We illustrate via numerical examples that these lower bounds are indeed useful to ensure the good quality of decentralized controllers designed by a heuristic optimization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The theory of H control of switched systems is extended to stochastic systems with state‐multiplicative noise. Sufficient conditions are obtained for the mean square stability of these systems where dwell time constraint is imposed on the switching. Both nominal and uncertain polytopic systems are considered. A Lyapunov function, in a quadratic form, is assigned to each subsystem that is nonincreasing at the switching instants. During the dwell time, this function varies piecewise linearly in time following the last switch, and it becomes time invariant afterwards. Asymptotic stochastic stability of the set of subsystems is thus ensured by requiring the expected value of the infinitesimal generator of this function to be negative between switchings, resulting in conditions for stability in the form of LMIs. These conditions are extended to the case where the subsystems encounter polytopic‐type parameter uncertainties. The method proposed is applied to the problem of finding an upper bound on the stochastic L2‐gain of the system. A solution to the robust state‐feedback control problem is then derived, which is based on a modification of the L2‐gain bound result. Two examples are given that demonstrate the applicability of the proposed theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the problems of L1‐gain analysis and control for switched positive systems with dwell time constraint. The state‐dependent switching satisfies a minimal dwell time constraint to avoid possible arbitrary fast switching. By constructing multiple linear co‐positive Lyapunov functions, sufficient conditions of stability and L1‐gain property are derived under the proposed switching strategy. Then, an effective state feedback controller is designed to ensure the positivity and L1‐gain property of the closed‐loop system. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

13.
This paper considers the problem of observer‐based H controller design for a class of discrete‐time nonhomogeneous Markov jump systems with nonlinear input. Actuator saturation is considered to be a nonlinear input of such system and the time‐varying transition probability matrix in the system is described as a polytope set. Furthermore, a mode‐dependent and parameter‐dependent Lyapunov function is investigated, and a sufficient condition is derived to design observer‐based controllers such that the resulting error dynamical system is stochastically stable and a prescribed H performance is achieved. Finally, estimation of attraction domain of such nonhomogeneous Markov jump systems is also made. A simulation example shows the effectiveness of developed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
This article addresses the problems of stability and L‐gain analysis for positive linear differential‐algebraic equations with unbounded time‐varying delays for the first time. First, we consider the stability problem of a class of positive linear differential‐algebraic equations with unbounded time‐varying delays. A new method, which is based on the upper bounding of the state vector by a decreasing function, is presented to analyze the stability of the system. Then, by investigating the monotonicity of state trajectory, the L‐gain for differential‐algebraic systems with unbounded time‐varying delay is characterized. It is shown that the L‐gain for differential‐algebraic systems with unbounded time‐varying delay is also independent of the delays and fully determined by the system matrices. Two numerical examples are given to illustrate the obtained results.  相似文献   

16.
This paper addresses the problems of local stabilization and control of open‐loop unstable discrete‐time quadratic systems subject to persistent magnitude bounded disturbances and actuator saturation. Firstly, for some polytopic region of the state‐space containing the origin, a method is derived to design a static nonlinear state feedback control law that achieves local input‐to‐state stabilization with a guaranteed stability region under nonzero initial conditions and persistent bounded disturbances. Secondly, the stabilization method is extended to deliver an optimized upper bound on the ?‐induced norm of the closed‐loop system for a given set of persistent bounded disturbances. Thirdly, the stabilization and ? designs are adapted to cope with actuator saturation by means of a generalized sector bound constraint. The proposed controller designs are tailored via a finite set of state‐dependent linear matrix inequalities. Numerical examples are presented to illustrate the potentials of the proposed control design methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We present a robust H observer for a class of nonlinear discrete‐time systems. The class under study includes an unknown time‐varying delay limited by upper and lower bounds, as well as time‐varying parametric uncertainties. We design a nonlinear H observer, by using the upper and lower bounds of the delay, that guarantees asymptotic stability of the estimation error dynamics and is also robust against time‐varying parametric uncertainties. The described problem is converted to a standard optimization problem, which can be solved in terms of linear matrix inequalities (LMIs). Then, we expand the problem to a multi‐objective optimization problem in which the maximum admissible Lipschitz constant and the minimum disturbance attenuation level are the problem objectives. Finally, the proposed observer is illustrated with two examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the finite horizon H control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This article concerns with the synthesis of L2 ‐gain state feedback controllers, without the standard regular assumption, for multi‐input switched nonlinear control‐affine systems under arbitrary switching. A common control storage function approach is developed for deriving sufficient conditions for the existence of uniform L2 ‐gain controllers. Moreover, an explicit formula for constructing L2 ‐gain controllers is presented. A numerical example is given for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号