首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Situ-Toughened Silicon Carbide   总被引:10,自引:0,他引:10  
A new processing strategy based on atmospheric pressure sintering is presented for obtaining dense SiC-based materials with microstructures consisting of (i) uniformly distributed elongate-shaped α-SiC grains and (ii) relatively high amounts (20 vol%) of second-phase yttrium aluminum garnet (YAG). This strategy entails the sintering of β-SiC powder doped with α-SiC, Al2O3, and Y2O3. The Al2O3 and Y2O3 aid in the liquid-phase sintering of SiC and form in situ YAG, which has a significant thermal expansion mismatch with SiC. During a subsequent grain-growth heat treatment, it is postulated that the α-SiC "seeds" assist in controlling in situ growth of the elongated α-SiC grains. The fracture pattern in the in situ -toughened SiC is intergranular with evidence of copious crack-wake bridging, akin to toughened Si3N4 ceramics. The elongate nature of the α-SiC grains, together with the high thermal-residual stresses in the microstructure, enhance the observed crack-wake bridging. This bridging accounts for a measured twofold increase in the indentation toughness of this new class of in situ -toughened SiC relative to a commercial SiC.  相似文献   

2.
The conditions for preparing α-aluminum silicon carbide (α-Al4SiC4) were examined by heating stoichiometric mixtures of ultrafine A14C3 and SiC powders with sizes of <0.1 μm at and below 1600°C. The starting A14C3 powder was obtained by the pyrolysis of trimiethylaluminum; the starting SiC powders were obtained by the pyrolyses of triethylsilane (3ES), tetraethylsilane (4ES), and hexamethyldisilane (6MDS). The reactivity of SiC with Al4C3 to form α-Al4SiC4 varies according to the kind of starting alkylsilane: 3ES > 4ES > 6MDS. The reaction of 3ES-derived SiC with A14C3 produced α-Al4SiC4 at temperatures as low as 1400°C for 240 min, regardless of the presence of A14C3 (trace). Only α-Al4SiC4 was formed at and above 1500°C for 60 min; the crystal growth was appreciable.  相似文献   

3.
A process based on liquid-phase sintering and subsequent annealing for grain growth is presented to obtain in situ -toughened SiC-30 wt% TiC composites. Its microstructures consist of uniformly distributed elongated α-SiC grains, matrixlike TiC grains, and yttrium aluminum garnet (YAG) as a grain boundary phase. The composites were fabricated from β-SiC and TiC powders with the liquid forming additives of A12O3 and Y2O3 by hot pressing. During the subsequent heat treatment, the β→α phase transformation of SiC led to the in situ growth of elongated α-SiC grains. The fracture toughness of the SiC-30 wt% TiC composites after 6-h annealing was 6.9 MPa-m1/2, approximately 60% higher than that of as-hot-pressed composites (4.4 MPa-m1/2). Bridging and crack deflection by the elongated α-SiC grains appear to account for the increased toughness of this new class of composites.  相似文献   

4.
The mechanism of material removal from SiC by CO2 laser heating was studied using sintered and single-crystal α-SiC. Removal rate and width of the groove showed maxima when plotted as a function of translation speeds. Groove depth decreased as the translation speed of samples increased. Similar results were obtained if argon or air was used as gas assist, which indicated that the material removal mechanism is induced dissociation of SiC. Microstructure of the material deposited in and outside of the groove was studied by SEM. At low scanning speeds, columnar grains 10 to 50 μm long appeared. As the scanning speed increased, columnar grains became smaller and finally only irregular polycrystalline particles were observed. By using Raman spectroscopy, Auger analysis, and X-ray diffraction, phases inside and outside the groove were identified as Si, β-SiC, C, and SiO2. Columnar grains were identified as β-SiC covered with thin layers of C, Si, and SiO2. Slow scanning speeds enhanced the growth of β-SiC. At slow scanning speed, free silicon was always found in the grooves of lased single crystals but not in the grooves of lased sintered SiC. It can be concluded that the mechanism of material removal from silicon carbide by CO2 laser heating is a vaporization process, and material found in the groove and on the surface near the groove is formed by condensation from the vapor.  相似文献   

5.
Silicon carbide whiskers were synthesized in situ by direct carbothermal reduction of silicon nitride with graphite in an argon atmosphere. Phase evolution study reveals that the formation of β-SiC was initiated at 1400° to 1450°C; above 1650°C silicon was formed when carbon was deficient. Nevertheless, Si3N4 could be completely converted to SiC with molar ratio Si3N4:C = 1:3 at 1650°C. The morphology of the SiC whiskers is needlelike, with lengths and diameters changing with temperature. SiC fibers were produced on the surface of the sample fired at 1550°C with an average diameter of 0.3 μm. No catalyst was used in the syntheses, which minimizes the amount of impurities in the final products. A reaction mechanism involving the decomposition of silicon nitride has been proposed.  相似文献   

6.
Combustion Synthesis of Silicon Nitride-Silicon Carbide Composites   总被引:2,自引:0,他引:2  
The feasibility of synthesizing silicon nitride-silicon carbide composites by self-propagating high-temperature reactions is demonstrated. Various mixtures of silicon, silicon nitride, and carbon powders were ignited under a nitrogen pressure of 30 atm (∼ 3 MPa), to produce a wide composition range of Si3N4-SiC powder products. Products containing up to 17 vol% of SiC, after being attrition milled, could be hot-pressed to full density under 1700°C, 3000 psi (∼ 21 MPa) with 4 wt% of Y2O3. The microhardness and fracture toughness of these composites were superior to those of the pure β-Si3N4 matrix material and compared very well with the properties of "traditionally" prepared composites.  相似文献   

7.
α(6 H )- and β(3 C )-SiC powders were sintered with the addition of AlB2 and carbon. α-SiC powder could be densified to ∼98% of the theoretical density over a wide range of temperatures from 1900° to 2150°C and with the additives of 0.67–2.7 mass% of AlB2 and 2.0 mass% of carbon. Sintering of the β-SiC powder required a temperature of >2000°C for densification with these additives. Grains in the α-SiC specimens grew gradually from spherical-shaped to plate-shaped grains at 2000°C; the 6 H polytype transformed mainly to 4 H . On the other hand, grains in the β-SiC largely grew at >2000°C; the 3 C polytype transformed to 4 H , 6 H , and 15 R . The stacking faults introduced in grains were denser in β-SiC than in α-SiC. The rapid grain growth in the β-SiC specimen was attributed to polytype transformation from the unstable 3 C polytype at the sintering temperature.  相似文献   

8.
Single-crystal β-SiC was implanted with aluminum to 3.90 × 1017 ions/cm2 at 168 keV at 773 K. The resultant compositional and structural characteristics were studied by Rutherford backscattering spectrometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy. No aluminum redistribution was observed during implantation. The Si-to-C ratio exhibited a negative deviation from unity in the implanted region. The shift in the photoelectron binding energies indicated the formation of aluminum carbide. The studies by electron microscopy showed that the implanted region consists of slightly misoriented β-SiC crystals and textured crystalline aluminum carbide precipitates  相似文献   

9.
The α→β reverse transformation in SiC is observed in Si3N4-particulate-reinforced-SiC composites made from as-received α-SiC and α-Si3N4 powders. However, the transformation does not occur to any great extent in composites made from deoxidized Si3N4-SiC powder compacts. Detailed transmission electron microscopy shows that most interfaces are covered with an ∼10 Å thick amorphous intergranular film in the composites made from as-received powders, whereas most interfaces are free of such films in the composites made from deoxidized powder compacts. These observations indicate that the α→β reverse transformation in SiC is encouraged by a nitrogen-containing liquid phase that occurs at high temperature in the composites made from the as-received powders. A mechanism is proposed to account for the experimental observations.  相似文献   

10.
Codeposition of Free Silicon during CVD of Silicon Carbide   总被引:1,自引:0,他引:1  
Factors influencing the concentration and distribution of elemental silicon codeposited during chemical vapor deposition (CVD) of SiC from MTS (CH3SiCl3) and hydrogen diluted by argon are reported. The experiments were carried out in both hot- and cold-wall reactors at 1383–1473 K at atmospheric pressure. Codeposition of free silicon was detected even at very low excess hydrogen, contrary to the prediction of thermochemical calculations. In the hot-wall reactor, under conditions of high exchange rate of the feed gases, deposits of uniform composition were obtained, containing 0%–90% free silicon, depending upon feed gas composition. The deposits of pure silicon carbide consisted of β-SiC with a microhardness of 2400 kg/mm2 at a typical formation rate of 30 μm/h. Microhardness decreased to 800 kg/mm2 with increasing silicon concentration. In the cold-wall reactor, under impinging gas flow conditions, nonuni-form deposition occurred: a local gradient of Si/SiC was obtained with free silicon concentrations varying gradually between 0% and 35%. Si/SiC ratios in the deposits were determined by a combination of XRD, scanning AES, and SMP.  相似文献   

11.
Ultrafine β-SiC powders mixed with 7 wt% Al2O3, 2 wt% Y2O3, and 1.785 wt% CaCO3 were hot-pressed and subsequently annealed in either the absence or the presence of applied pressure. Because the β-SiC to α-SiC phase transformation is dependent on annealing conditions, the novel processing technique of annealing under pressure can control this phase transformation, and, hence, the microstructures and mechanical properties of fine-grained liquid-phase-sintered SiC ceramics. In comparison to annealing without pressure, the application of pressure during annealing greatly suppressed the phase transformation from β-SiC to α-SiC. Materials annealed with pressure exhibited a fine microstructure with equiaxed grains when the phase transformation from β-SiC to α-SiC was <30 vol%, whereas materials annealed without pressure developed microstructures with elongated grains when phase transformation was >30 vol%. These results suggested that the precise control of phase transformation in SiC ceramics and their mechanical properties could be achieved through annealing with or without pressure.  相似文献   

12.
Fine-grained (<1 μm) silicon carbide ceramics with high strength were obtained by using ultrafine (∼90 nm) β-SiC starting powders and a seeding technique for microstructural control. The microstructures of the as-hot-pressed and annealed ceramics without α-SiC seeds consisted of fine, uniform, and equiaxed grains. In contrast, the annealed material with seeds had a uniform, anisotropic microstructure consisting of elongated grains, owing to the overgrowth of β-phase on α-seeds. The strength, the Weibull modulus, and the fracture toughness of fine-grained SiC ceramics increased with increasing grain size up to ∼1 μm. Such results suggested that a small amount of grain growth in the fine grained region (<1 μm) was beneficial for mechanical properties. The flexural strength and the fracture toughness of the annealed seeded materials were 835 MPa and 4.3 MPa·m1/2, respectively.  相似文献   

13.
α-silicon carbide platelet/β-silicon carbide composites have been produced in which the individual platelets were coated with an aluminum oxide layer. Hot-pressed composites showed a fracture toughness as high as 7.2 MPa·m1/2. The experiments indicated that the significant increase in fracture toughness is mainly the result of crack deflection and accompanying platelet pullout. The coating on the platelets also served to prevent the platelets from acting as nucleation sites for the α- to β-phase transformation, so that the advantageous microstructure remains preserved during high-temperature processing.  相似文献   

14.
Fine Si3N4-SiC composite powders were synthesized in various SiC compositions to 46 vol% by nitriding combustion of silicon and carbon. The powders were composed of α-Si3N4, β-Si3N4, and β-SiC. The reaction analysis suggested that the SiC formation is assisted by the high reaction heat of Si nitridation. The sintered bodies consisted of uniformly dispersed grains of β-Si3N4, β-SiC, and a few Si2N2O.  相似文献   

15.
A dense (97% of theoretical density) Si3N4—SiC composite containing 10 wt%β-SiC was prepared by introducing a SiC phase by the pyrolysis of a polymeric SiC precursor. The composite material was produced by mixing an alkyl/aryl-substituted polysilane with Si3N4 powder and, by subsequently forming green compacts, pyrolyzing the polymeric species, and finally sintering the sample. Synthesis and characterization of the polymeric compound was described. Its transformation reactions to SiC and the characterization of the ceramic residue were also studied. High ceramic yields were obtained by curing the as-synthesized polysilane at 500°C in an Ar atmosphere. The heat treatment had no effect on the good solubility of the polymeric precursor in organic solvents. This was important for processes such as infiltration, sealing, and coating and for the mixing of the polymer with powders for the preparation of homogeneous composite ceramics. The dense microstructure of the pyrolyzed and sintered Si3N4 powder–polysilane mixture exhibited reduced grain growth of the Si3N4 particles and a very homogeneous distribution of the in situ-formed β-SiC phase.  相似文献   

16.
Homogeneous silicon boron oxycarbide (Si-B-O-C) glasses based on SiO x C4– x and BO y C3– y mixed environments were obtained by pyrolysis under inert atmosphere of sol–gel-derived precursors. Their high-temperature structural evolution from 1000° to 1500°C was followed using XRD, 29Si and 11B MAS NMR, and chemical analysis and compared with the behavior of the parent boron-free Si-O-C glasses. The XRD study revealed that, for the Si-O-C and the Si-B-O-C systems, high-temperature annealing led to the crystallization of nanosized β-SiC into an amorphous SiO2-based matrix. NMR analysis suggested that the β-SiC crystallization occurred with a consumption of the mixed silicon and boron oxycarbide units. Finally, by comparing the behavior of the Si-O-C and Si-B-O-C glasses, it was shown that the presence of boron increased the crystallization kinetics of β-SiC.  相似文献   

17.
Starting from three powder mixtures of 80 vol% SiC (100α, 50α/50β, 100β) and 20 vol% YAG, liquid-phase-sintered silicon carbide ceramics were prepared by hot pressing at 1800°C for 1 h under 25 MPa, and then by hot forging or annealing at 1900°C for 4 h under an applied stress of 25 MPa in argon. The phase transformation and texture development in the as-hot-pressed, hot-forged, and annealed SiC ceramics were investigated via X-ray diffraction (XRD) and the pole figure measurements. The 6H → 4H polytypic transformation was observed in samples consisting of both α- and β-SiC phases when subjected to compressive deformation but absent in the case of annealing, suggesting the deformation-enhanced solubility of aluminum in SiC. Deformation was also found to enhance the 3C → 4H transformation in the sample containing entirely β-phase, which is due to the accelerated solution-precipitation process assisted by grain boundary sliding. The current study showed that the β- →α-phase transformation had little effect on texture development in SiC. Hot forging generally produced the strongest texture, with the calculated maximum of 2.2 times random in samples started with pure α-SiC phase. The mechanism for texture development was explained based on the microstructural observations.  相似文献   

18.
The effects of β-SiC whisker addition on the microstructural evolution and fracture toughness ( K IC) of hot-pressed SiC were investigated. Most of the whiskers added disappeared during the densifcation process by transformation into the α-phase. The remaining whiskers acted as nuclei for grain growth, resulting in the formation of large tabular grains around the whiskers. The tabular grains around the whiskers were believed to be formed because of the extreme anisotropy of the interfacial energy between α- and β-SiC. The K IC of the material was improved significantly by the whisker addition. The increase in the K IC was attributed to crack bridging followed by grain pullout as a result of the formation of tabular grains in a fine matrix.  相似文献   

19.
Phase transformation and thermal conductivity of hot-pressed β-SiC with Al2O3 and carbon additions were studied. Densification rate was a complex function of both Al2O3 and carbon. Simultaneous additions of Al2O3 and carbon accelerated the 3C → 4H phase transformation. Carbon additions lowered the thermal conductivity of the compact as did the high-temperature hot-pressing. The 3C → 4H transformation and the thermal conductivity were deduced to be related to each other.  相似文献   

20.
In Situ Processing of Silicon Carbide Layer Structures   总被引:1,自引:0,他引:1  
A novel route to low-cost processing of silicon carbide (SiC) layer structures is desribed. The processing involves pressureless liquid-phase cosintering of compacted power layers of SiC, containing alumina (Al2O3) and yttria (Y2O3 sintering additives to yield and yttrium aluminum garnet (YAG) second phase. By adjusting the β:α SiC phase ratios in the individual starting powders, alternate layers with distinctively different microstructures are produced: (i) "homogeneous" microstructures, with fine equiaxed SiC grains, designed for high strength; and (ii) "heterogeneous: microstructures with coarse and elongate SiC grains, designed for high toughness. By virtue of the common SiC and YAG phases, the interlayer interfaces are chemically compatible and strongly bonded. Exploratory Hertzian indetation tests across a bilayer interface confirm the capacity of the tough heterogeneous layer to inhibit potentially dangerous cracks propagating through the homogeneous layer. The potential for application of this novel processing approach to other layer architectures and other ceramic systems is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号