首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A mild hydrothermal method has been adopted to prepare La0.5Sr0.5MnO3 and La0.5Ba0.5MnO3, which is of interest for a number of possible applications. The results from X-ray diffraction (XRD) indicate that in the present work the temperature of 200 and 240 °C are sufficient to prepare phase pure La0.5Sr0.5MnO3 and La0.5Ba0.5MnO3 crystals. At 200 °C, La0.5Sr0.5MnO3 nanowires are obtained. The average width and length of the nanowires are 40 nm and 4 μm, respectively. At 240 °C, La0.5Ba0.5MnO3 powders obtained have a cubic structure with the average size of 3-5 μm.  相似文献   

2.
In this letter, an oxide heterostructure has been fabricated by successively growing La0.7Sr0.3MnO3 (LSMO) and BiFeO3 (BFO) layers on LaAlO3 (100) by pulsed laser deposition. Analysis of the leakage current at different temperature demonstrated that the Poole-Frenkel dominated the leakage current mechanism. Additionally, the BiFeO3/La0.7Sr0.3MnO3 heterostructure exhibits a positive colossal magnetoresistance (MR) effect over a temperature range of 50-320 K. The maximum MR values are determined to be about 45.32% at H = 0.5 T and 28.34% at H = 0.3 T. At last, we report photoconductivity in BiFeO3/La0.7Sr0.3MnO3 film under illumination from 160 mW/cm2 and 200 mW/cm2 green-light source, and photoconductivities increase with the intensity of light enhanced.  相似文献   

3.
La0.7Sr0.3MnO3 thin films were deposited on SiO2/Si substrates by RF magnetron sputtering under different oxygen gas flow rates with a sputtering power of 100 W. During deposition, the substrate was heated at 623 K. To investigate post-annealing effects, the as-deposited La0.7Sr0.3MnO3 thin films were thermal-treated at 973 K for 1 h. The effects of oxygen gas flow rate and post-annealing treatment on the physical properties of the films were systematically studied. X-ray diffraction results show that the growth orientation and crystallinity of the films were greatly affected by the oxygen gas flow rate and substrate heating during deposition. The sheet resistance of the films gradually decreased with increasing oxygen gas flow rate, while the post-annealed films showed the opposite behavior. The temperature coefficient of resistance at 300 K of La0.7Sr0.3MnO3 thin films deposited at an oxygen gas flow rate of 40 sccm decreased from − 2.40%/K to − 1.73%/K after post annealing. The crystalline state of the La0.7Sr0.3MnO3 thin films also affected its electrical properties.  相似文献   

4.
Ping He 《Materials Letters》2008,62(14):2157-2160
Nano-sized calcium strontium titanate (Sr0.7Ca0.3TiO3) particles were prepared by low temperature aqueous synthesis method at temperature as low as 90 °C and under ambient pressure. To improve the morphology and crystallinity of the particles, the hydrothermal treatment was used. The lattice structure, particle size, particle morphology, and hydroxyl defects of Sr0.7Ca0.3TiO3 particles were investigated by using XRD, TEM, FE-SEM, TG and FT-IR measurements. The as-prepared particles with size about 100 nm were single cubic phase crystallines which consist of aggregates of small rounded nanocrystals about 10 nm in diameter. However, in as-prepared crystallines, a hydroxyl group was detected as a lattice defect. After the hydrothermal treatment, the hydroxyl groups in Sr0.7Ca0.3TiO3 nanoparticles were partially released from the perovskite lattice. The morphology and crystallinity of the hydrothermally treated particles were observably improved.  相似文献   

5.
La(1 − x)AlxFeO3 (x = 0, 0.1, 0.3) has been prepared by solid state reaction method. The formation of pure crystallographic phase of LaFeO3 and the substitution of Al3+ in all the doped samples have been confirmed by Rietveld analysis. The magnetic measurements viz., magnetization curves, hysteresis loops etc. in the temperature range 300-5 K showed that magnetization of the doped samples has been appreciably enhanced compared to that of the pristine LaFeO3. The maximum enhancement factor of ~ 19 for saturation magnetization measured at room temperature has been found in La0.7Al0.3FeO3.  相似文献   

6.
La1−xSrxMnO3 (x=0.3) (LSM) nanoparticles were prepared by a sonication-assisted coprecipitation method. The coprecipitation reaction is carried out with ultrasound radiation. Lower sintering temperatures are required for the sonication-assisted product. Fully crystallized LSM with an average particle size 24 nm is obtained after the as-prepared mixture is annealed at 900 °C for 2 h. Magnetic properties indicate that the transition temperature from the paramagnetic to ferromagnetic state of the sample is quite sharp and occurs at 366 K for samples annealed for 2 h at 900 and 1100 °C.  相似文献   

7.
La0.5Sr0.5MnO3/La(OH)3 composites with different weight ratio of La0.5Sr0.5MnO3 particles and La(OH)3 nanowires have been prepared by tuning the reaction time under hydrothermal conditions. The structure, morphology and magnetic properties have been investigated. Additionally, by the measurements of the complex permittivity, permeability and microwave absorption properties in the frequency range of 1-12 GHz, the results shown that the weight ratio of La(OH)3 nanowires has great influence on reflection loss. Excellent absorption property can be obtained when the ratio is 1.4%, which is attributed to the enhanced electromagnetic match as well as the proper dielectric loss and magnetic loss. The enhanced electromagnetic match is originated from the improved frequency dispersion of the complex permittivity and permeability due to the presence of dielectric La(OH)3 nanowires.  相似文献   

8.
La0.67Ba0.33MnO3-20 wt.%-Ba0.7Sr0.3TiO3 composites were sintered at different temperatures in order to explore the possibility of improving the magneto-transport properties of the composites. Detail studies on the magnetic and electrical transport properties for the sintered composite samples have been performed. Results show that the sintered composites have identical ferromagnetic to paramagnetic transition temperature and filamentary feature of metallic phase. When sintering temperature higher than 1300 °C, the composites show Efros-Shklovskii-like variable-range hopping in the temperature range lower than Curie temperature. For samples sintered lower than 1100 °C, a dome-like resistance peak appears at a temperature well below the Curie temperature. Magnetoresistance behavior indicates the existence of spin polarized tunneling in the low temperature range. Considering the contributions from Efros-Shklovskii-like variable-range hopping and spin polarized tunneling, the resistance peak can be well fitted.  相似文献   

9.
This work is focused on nanocrystalline solid oxide fuel cell synthesis and characterization (SOFC) anodes of La0.7Sr0.3Cr0.4Mn0.6O3−δ (perovskite-type) with Nickel. Perovskite-type oxide chemical reactivity, nucleation kinetics and phase composition related with La0.7Sr0.3Cr0.4Mn0.6O3−δ–NiO to La0.7Sr0.3Cr0.4Mn0.6O3−δ–Ni transformation have been analyzed. SOFC anode powders were obtained by sol–gel synthesis, using polyvinyl alcohol as an organic precursor to get a porous cermet electrode after sintering at 1365 °C and oxide reduction by hydrogen at 800 °C/1050 °C for 8 h in a horizontal tubular reactor furnace under 10% H2/N2 atmosphere. Composite powders were compressed into 10-mm diameter discs with 25–75 wt% Ni.  相似文献   

10.
La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials have attracted a substantial interest for application as cathode in solid oxide fuel cells of intermediate temperature (IT-SOFC). This work investigates the effect of different propellants (urea, glycine, citric acid and sucrose) in the preparation of LSCF powders by the combustion method and also the influence of the sintering temperature on the porosity and electrical conductivity. TGA profiles of the as-prepared samples showed a lower weight loss for the sample prepared with glycine, associated with the higher combustion temperature. XRD patterns presented characteristic reflections of LSFC perovskite and a small formation of secondary phases, with nanometric crystallite sizes (9-20 nm). SEM analysis revealed the loose and porous structure of the powder materials. Densification studies were carried within 950-1100 °C, showing that porosity decreased with increasing sintering temperature. Electrical conductivity was measured in the temperature range 300-800 °C and correlated with the sintering temperature.  相似文献   

11.
In order to identify new cathode compositions for the high temperature solid oxide fuel cell, we have investigated the effect of the trivalent cations Al and Ga at the Mn site of the well-studied cathode composition La0.84Sr0.16MnO3. All the compositions have been prepared by the low temperature citrate-nitrate auto-ignition process and sintered within the temperature range of 1150-1350 °C for 4 h. In order to understand the compatibility of the prepared samples as alternative cathode materials, we compared their electrical conductivity and thermal expansion coefficient with those of La0.84Sr0.16MnO3 and yttria-stabilized zirconia. A 10 mol% Al doped La0.84Sr0.16MnO3 composition exhibited a conductivity of around 122 S cm−1 at 950 °C and a thermal expansion coefficient of 11.04 × 10−6 K with a minimum reactivity towards yttria-stabilized zirconia. Though the conductivity of the new composition is lower than that of La0.84Sr0.16MnO3 (169 S cm−1 at 950 °C), it is still high enough for use as a cathode material.  相似文献   

12.
In this paper, an interconnecting ceramic for solid oxide fuel cells was developed, based on the modification from La0.7Ca0.3CrO3−δ by addition of Ce0.8Sm0.2O1.9. It is found that addition of small amount Ce0.8Sm0.2O1.9 into La0.7Ca0.3CrO3−δ dramatically increased the electrical conductivity. For the best system, La0.7Ca0.3CrO3−δ + 5 wt.% Ce0.8Sm0.2O1.9, the electrical conductivity reached 687.8 S cm−1 at 800 °C in air. In H2 at 800 °C, the specimen with 3 wt.% Ce0.8Sm0.2O1.9 had the maximal electrical conductivity of 7.1 S cm−1. With the increase of Ce0.8Sm0.2O1.9 content the relative density increased, reaching 98.7% when the Ce0.8Sm0.2O1.9 content was 10 wt.%. The average coefficient of thermal expansion at 30-1000 °C in air increased with Ce0.8Sm0.2O1.9 content, ranging from 11.12 × 10−6 to 12.46 × 10−6 K−1. The oxygen permeation measurement illustrated a negligible oxygen ionic conduction, indicating it is still an electronically conducting ceramic. Therefore, this material system will be a very promising interconnect for solid oxide fuel cells.  相似文献   

13.
Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 °C using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 °C to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 °C. Films with highest perovskite content were found to form at 820-840 °C on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 °C. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan δ) of 0.035 at a frequency of 1 kHz at room temperature.  相似文献   

14.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

15.
We present a new method to improve the oxygen flux properties and stability of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ tube membrane using a thin layer of La0.6Sr0.4Ti0.3Fe0.7O3 − δ as protective coatings. The first relevant result is that the La0.6Sr0.4Ti0.3Fe0.7O3 − δ protective layer had an extraordinary positive effect on improving the oxygen permeation flux of the tubular Ba0.5Sr0.5Co0.8Fe0.2O3 − δ membranes. La0.6Sr0.4Ti0.3Fe0.7O3 − δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3 − δ tubular membrane showed the highest oxygen permeability with the flux reaching ~ 3 ml cm−2 min−1 (oxygen purity > 99%) at 950 °C in static atmospheric pressure through a 1.0 mm thick membrane.  相似文献   

16.
High dielectric constant and low loss ceramics in the system Ba2 − xSrxLa3Ti3NbO15 (x = 0-1) have been prepared by conventional solid-state ceramic route. Ba2 − xSrxLa3Ti3NbO15 solid solutions adopted A5B4O15 cation-deficient hexagonal perovskite structure for all compositions. The materials were characterized at microwave frequencies. They show a linear variation of dielectric properties with the value of x. Their dielectric constant varies from 48.34 to 43.03, quality factor Qu × f from 20,291 to 39,088 GHz and temperature variation of resonant frequency from 8 to 1.39 ppm/°C as the value of x increases. These low loss ceramics might be used for dielectric resonator (DR) applications.  相似文献   

17.
In this paper, simple chemical solution deposition method is used to prepare La0.95Sr0.05CoO3 thin films on SrTiO3 (001) substrates by acetate-based precursors. The derived film is characterized by x-ray diffraction, field-emission scanning electron microscopy and transmission electronic microscopy. The derived film is epitaxial growth with < 001>[100] La0.95Sr0.05CoO3||<001>[100] SrTiO3, indicating that the chemical solution deposition is an effective route to obtain the cobalt-based films. The resistivity, Seebeck coefficient and thermal power factor are 0.05Ω cm, 250 μV/K and 0.21 mWK− 2m− 1 at 300 K, respectively, which is higher than these of the ceramics, indicating epitaxial thin film is an effective route to enhance the thermoelectric properties of La0.95Sr0.05CoO3.  相似文献   

18.
Three types of Ba0.5Sr0.5TiO3 (BST) thin film parallel plate varactor with different bottom electrodes were fabricated. The bottom electrodes of three types of varactor were perovskite conducting oxide La0.7Sr0.3MnO3 (LSMO), Pt and Au, respectively. Dielectric properties of the BST thin films were characterized in the frequency range from 10 MHz to 15 GHz. The microstructure of the BST thin films was investigated by X-ray diffraction and scanning electron microscope. The microstructural analysis shows that the BST thin films grown on LSMO and Pt bottom electrodes are polycrystalline textured with columnar grains. Dielectric measurement indicates that the BST thin film grown on LSMO bottom electrode has a maximum dielectric constant and a little higher loss tangent.  相似文献   

19.
A series of La1−xSbxFeO3 was prepared using the conventional solid state method. XRD revealed the formation of the orthorhombic structure with space group Pbnm. The data showed that, the molar magnetic susceptibility and coercive field HC were increased from 9.16 × 10−3 to 26.9 × 10−3 emu g−1 mol and 1196 to 5465 Oe from for LaFeO3 to La0.95Sb0.05FeO3, respectively. The coercive field (HC) of the sample with x = 0.05 increased 6 times than that of the parent LaFeO3 and the saturation magnetization (Ms) was increased from 0.1614 emu g−1 for the parent LaFeO3 to 0.2654 emu g−1 for the doped sample. The dielectric constant (?′) was increased with increasing the Sb3+ content. The ac conductivity (σ) increases from 2.36 × 10−3 Ω−1 m−1 for the LaFeO3 to 30 × 10−3 Ω−1 m−1 for the sample La0.95Sb0.05FeO3 at T = 553 K and frequency 1 MHz. The sample La0.95Sb0.05FeO3 is concluded to be a novel single phase multiferroic material.  相似文献   

20.
We propose La1−xSrxMnO3 as a new lead-free and ruthenium-free conductive oxide used for thick film resistors. The temperature coefficient of resistivity (TCR) of the La1−xSrxMnO3 was controlled systematically by changing the composition x. The TCR behavior depended on the change of the crystal symmetries and the average valence of Mn ions. The highest value of 9356 ppm/°C was obtained at the x = 0.35. Zero TCR was realized around 0.200 < x < 0.225 and 0.45 < x < 0.50, where the critical x values were related to the characteristic change from Mott-insulator to metallic behavior. The systematical controlling TCR and the zero TCR are the first to be demonstrated for conductive oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号