首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The transient power failure process of a prototype pump-turbine was studied numerically by three-dimensional (3-D) simulations. Fluid coupling and dynamic mesh (DM) method were used to calculate the rotational speed of the runner. Simulations were performed based on turbulence model. Specific transient characteristics, such as the flow rate, head, rotational speed, were analyzed. The pumpturbine had a minimum head and a maximum axial force when the flow rate was 0 during the transient process. Pressure fluctuations increased when the pump-turbine ran at pump braking mode. Reverse flow in the casing as well as stall phenomenon in the runner had a great effect on the change of head. Pressure in the runner was greatly reduced when the pump-turbine ran at pump braking mode. The computational method could be used to interpret the abnormal phenomenon by the analysis of flow mechanism during a transient process.  相似文献   

2.
预开导叶下水泵水轮机S特性及其压力脉动分析   总被引:3,自引:0,他引:3  
可逆式水泵水轮机兼具了发电以及储能的特点既满足人们环保意识的需求也满足对功率的平衡与控制。但水泵水轮机在S特性区内运行会发生机组并网困难或者甩负荷过程中水压异常上升,使机组振动加剧。为探究预开启导叶的方法对水泵水轮机S特性的改善,对水泵水轮机模型分别在同步导叶和不同预开启导叶条件下进行能量试验及全流道内流场的(Computational fluid dynamics,CFD)数值计算;通过试验数据与计算结果的对比分析预开导叶后水泵水轮机S特性及其压力脉动特征。CFD计算结果及模型试验数据表明,预开导叶的方法能有效解决水泵水轮机S特性问题,但是预开导叶后,飞逸工况下的单位流量变大,造成转轮内的流动轴对称特性较差,导致机组的脉动加大,尾水管压力脉动幅值较大,运行稳定性较差,所以通过预开导叶的方法来改善S特性仍然存在弊端。  相似文献   

3.
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.  相似文献   

4.
The Reynolds-averaged Navier-Stokes(RANS),such as the original k-ω two-equation closures,have been very popular in providing good prediction for a wide variety of flows with presently available computational resource.But for cavitating flows,the above equations noticeably over-predict turbulent production and hence effective viscosity.In this paper,the detached eddy simulation(DES) method for time-dependent turbulent cavitating flows is investigated.To assess the state-of-the-art of computational capabilities,different turbulence models including the widely used RANS model and DES model are conducted.Firstly,in order to investigate the grid dependency in computations,different grid sizes are adopted in the computation.Furthermore,the credibility of DES model is supported by the unsteady cavitating flows over a 2D hydrofoil.The results show that the DES model can effectively reduce the eddy viscosities.From the experimental validations regarding the force analysis,frequency and the unsteady cavity visualizations,more favorable agreement with experimental visualizations and measurements are obtained by DES model.DES model is better able to capture unsteady phenomena including cavity length and the resulting hydrodynamic characteristics,reproduces the time-averaged velocity quantitatively around the hydrofoil,and yields more acceptable and unsteady dynamics features.The DES model has shown to be effective in improving the overall predictive capability of unsteady cavitating flows.  相似文献   

5.
The transient flow in pump-turbines during the load rejection process is very complex. However, few studies have been conducted on three-dimensional (3-D) numerical simulation. Hence, we simulated 3-D transient turbulent flow in a pump-turbine during the load rejection process using the calculation method of coupling the flow with the rotor motion of rigid body. To simulate the unsteady boundary conditions, the dynamic closing process of the guide vanes was simulated with the dynamic mesh technology. The boundary conditions at the spiral-casing inlet and the draft tube outlet were determined using the user defined functions (UDF) according to the experimental data. The numerical results of the rotational speeds show a good agreement with the experimental data. Then, the complex transient flow in the pump-turbine during the load rejection process was analyzed based on the numerical results. The results show that there are severe unsteady vortex flows in the vaneless space near the conditions under which the hydraulic torque on the runner equals to zero. When the pump-turbine operates into the maximum reverse discharge condition in the reverse pump operating process, the unsteady vortex flows in the vaneless space are instantaneously impacted into the region between the guide vanes and the stay vanes by the sudden reverse flows. The formation and development mechanism of the unsteady vortex flow in the vaneless space is associated with the distribution characteristic of the velocity field.  相似文献   

6.
针对抽水蓄能电站稳定性的要求,利用可逆式水轮机水泵工况断电过程中蜗壳出水边的压力始终保持恒定(水轮机工况的水头),机组转速连续变化这一规律,根据转速的不同来选取不同的工况点。在Fluent软件中,通过变换转轮的边界条件设置,可模拟可逆式水轮机水泵断电过程不同工况点水力变化,计算时采用雷诺时均方程和RNG肛£湍流模型,压力和速度耦合采用半隐式(SIMPLEC)算法。对可逆式水轮机不同工况点模拟结果进行了分析总结,数值试验结果直观地反映了可逆式水轮机水泵工况断电的不同工况点、叶片表面的压力分布、蜗壳内部的流场漩涡分布、水力损失等,对可逆式水轮机的转轮设计和结构优化有一定的应用价值。  相似文献   

7.
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.  相似文献   

8.
The pressure fluctuation caused by unsteady flow in runner is one of the main reasons of vibration for a large Francis hydraulic turbine. It directly affects the steady operation of the hydraulic turbine unit. The existing research of the pressure fluctuation in hydraulic turbine mainly focuses on the unsteady flow in draft tube. Accurate distribution of pressure fluctuations inside a runner is not very clear. In this paper, the numerical method for predicting the pressure fluctuations in runner is investigated and the numerical simulation is performed for a large Francis hydraulic turbine. It is proved that the combination of shear-stress transport(SST) k-w turbulence model and pressure-implicit with splitting of operators(PISO) algorithm could give more reliable prediction of pressure fluctuations in runner. The frequencies of pressure fluctuations in runner are affected by the flow in guide vane and the flow in draft tube. The first dominant frequency is significantly determined by the flow in draft tube, especially at part load condition. This frequency is approximately equal to one-third of the runner rotating frequency. The evident second dominant frequency is exactly equal to the guide vane passing frequency. The peak-to-peak amplitudes of pressure fluctuations in runner at small guide vane open angle are larger than that at large open angle at the same operating head. The amplitudes at points on blade pressure surface are generally greater than that on suction surface. The research results could be used to direct the hydraulic design and operation stability improvement of a large Francis hydraulic turbine.  相似文献   

9.
When an axial-flow pump works in low flow rate conditions, rotating stall phenomena will probably occur, and the pump will enter hydraulic unsteady conditions. The rotating stall can lead to violent vibration, noise, turbulent flow, and a sharp drop in efficiency. This affects the safety and stability of the pump unit. To study the rotating stall flow characteristics of an axial-flow pump, the steady and unsteady internal flow field in a large vertical axial-flow pump was investigated using 3D computational fluid dynamic (CFD) technology. Numerical calculations were carried out using the Reynolds-averaged Navier–Stokes (RANS) solver and Menter's shear stress transport (SST) k-ω turbulence model. Steady flow characteristics including streamline, velocity vector, pressure and turbulent kinetic energy are presented and analyzed. Unsteady flow characteristics are described using post-processing signals for pressure monitoring points in the time and frequency domains. Using Q-criterion, the locations and evolution rules of the core region of the vortex structure in guide vanes under deep stall conditions were investigated. The reliability of the numerical simulation results was verified using the experimental prototype pressure fluctuation test. In this way, typical flow structure and pressure fluctuation characteristics in an axial-flow pump were analyzed, with contrastive analysis in design condition and stall conditions. Finally, the mechanism of low-frequency pressure fluctuation in a pump unit under the stall condition was revealed.  相似文献   

10.

Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  相似文献   

11.
The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.  相似文献   

12.
以某型号大型船用涡轮增压器压气机为研究对象,以CFD软件为平台,利用具有k-ε双方程湍流模型的NS方程计算了压气机的三维黏性非定常流场特性。采用Ffowcs Williams-Hawkings方程(简称FW-H方程)对压气机的离散噪声进行了分析,并与经验公式进行了比较。深入研究了不同转速、流量对压气机气动噪声的影响。分析表明,叶轮内气动噪声水平较高,是主要噪声源;转速对于离散噪声影响较大,转速增加一倍,声压级上升约14dB;同一转速下,流量的降低将导致噪声幅值增加,但相对于转速变化其影响较小。  相似文献   

13.
离心泵叶轮内部湍流流动的数值计算及试验   总被引:17,自引:1,他引:16  
对IH65型离心泵叶轮内部流动进行研究,基于Reynolds时均化的N-S方程和标准的k – e 两方程湍流模型,运用流场计算软件Fluent,计算该泵叶轮在不同工况下的内部流场,并将计算结果与粒子图像测速仪(PIV)实测结果进行比较。在对该泵叶轮内部流速分布、压力分布以及试验得到的流动撞击、二次流、回流等现象分析的基础上,提出设计上的一些改进措施,为该型泵叶轮优化设计及其内部两相流动研究提供参考。  相似文献   

14.
阐述了高效风机的结构形式,对影响风机效率的因素进行了分析,提出了高效风机的设计原则。并设计出风机的主要部件叶轮、蜗壳和集流器,在此基础上,基于CFD理论与标准的湍流模型,运用流体计算软件CFX,在不同工况下该风机叶轮蜗壳耦合流场进行了数值模拟研究。并对流场细节、风机全压和效率进行分析,结果表明:设计出的风机效率高、气体流动性好。  相似文献   

15.
Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power systems to capture the energy of ocean waves have been developed. However, a suitable turbine type is not yet normalized because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for a wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in cases with and without wave conditions. Most of the output power is generated at the runner passage of Stage 2. Relatively larger amount of the decreased tangential velocity at Stage 2 produces more angular momentum than that at Stage 1 and thus, the larger angular momentum at the Stage 2 makes a greater contribution to the generation of total output power in comparison with that at Stage 1. Large vortex existing in the upper-left region of the runner passage forms a large recirculation region in the runner passage, and the recirculating flow consumes the output power at Region 2.  相似文献   

16.
《流体机械》2015,(7):42-46
基于CFD技术,以静压进口和静压出口作为边界条件,采用标准k-ε湍流模型对8种不同阀芯结构和进口流道形状的船用吹除阀内部流动特性进行数值研究。研究结果表明,阀芯结构对质量流量的影响较小,影响偏差值为0.18kg/s;进口流道形状对质量流量影响较大,影响偏差值为1.41kg/s。阀芯结构对内部流动影响较小,进口形状对内部流动具有较大影响,锥管进口的速度变化梯度高于直管进口,锥管进口涡的强度大于直管进口。船用吹除阀设计时,建议采用Rt=2mm的弧形阀芯和直管进口形式.  相似文献   

17.
为研究双向泵在正、反向运行时非稳定区的内流特性,以名以比转速为1600的双向轴流泵为研究对象,采用标准k-ε湍流模型对双向泵进行了正反向、多工况下的非定常数值模拟,比较了正、反向马鞍区内泵的内流特征及压力脉动变化情况,结果表明:反向时鞍型曲线出现的流量减小,马鞍区范围变窄;在所研究工况,正、反向运行时在叶片进口前靠近壁面处、出口后靠近轮毂处以及导叶内均出现了较大尺度漩涡,反向时,叶轮前的大尺度漩涡向上游移动,在轮毂后也形成了较大的回流区,同时,由于流场的非稳定特性,正向在12、42、45倍转频,反向在05倍转频,反向在02倍转频出现了明显的压力脉动。  相似文献   

18.
《流体机械》2013,(10):25-29
以卧螺离心机螺旋流道内流体为研究对象,应用Fluent软件中提供的7种典型湍流模型,在相同网格条件下进行三维稳态数值模拟。模拟结果表明:RNG k-ε模型与文献值吻合性最好,其次是SST k-ω模型,Realizable k-ε模型虽然模拟结果良好,但选用时要慎重。RSM模型仅在模拟高转速时比较适合,在低转速时,偏差较大,而标准k-ε,标准k-ω,S-A模型模拟结果与文献结果偏差较大。本文结果可以为卧螺离心机流场计算中的湍流模型的选取提供参考。  相似文献   

19.
Computational fluid dynamics (CFD) flow simulation techniques have the potential to enhance understanding of how haemodynamic factors are involved in atherosclerosis. Recently, three-dimensional ultrasound has emerged as an alternative to other three-dimensional imaging techniques, such as magnetic resonance angiography (MRA). The method can be used to generate accurate vascular geometry suitable for CFD simulations and can be coupled with Doppler ultrasound to provide physiologically realistic flow boundary conditions. However, there are various ways to utilize the flow data acquired, possibly leading to different results regarding both flow and wall shear stress patterns. A disadvantage of three-dimensional ultrasound for imaging the carotid bifurcation has been established as being the scanning limitation of the jawbone position. This may make artificial extensions of the internal and/or external carotid arteries necessary, which in turn may influence the predicted flow patterns. Flow simulations were carried out for three outflow calculation schemes as well as four geometries with different extensions to the carotid daughter vessels. It was found that variation of flow patterns was more strongly influenced by the outflow conditions than by the extensions of the daughter vessels. Consequently, it is recommended that for future CFD simulations of carotid flow using three-dimensional ultrasound data, the outflow boundary conditions should rely on the most accurate measurement available, and flow data recorded in the common and internal carotid are considered more reliable than data from the external carotid. Even though the extended lengths of the daughter vessels have insignificant effects on the predicted haemodynamic parameters, it would be a safer option to extend the internal carotid by approximately three times the diameter of the common carotid artery.  相似文献   

20.
针对高寒动车组转向架积雪问题,基于离散相模型对风雪两相流条件下雪花颗粒的运动特性进行了仿真分析,通过在转向架前后两端加装导流板,抑制转向架前端雪花颗粒的上扬趋势以及减少后端回流进入转向架区域的雪花颗粒的数量,并利用流动场协同原理,对转向架防积雪的导流板装置进行优化.研究结果表明:由于列车运行时产生的列车风在转向架区域形成大量低速涡流,导致雪花颗粒随底部高速气流上扬进入转向架,并在低速涡流附近形成堆积;基于流动场协同原理对导流板进行优化后,改善了转向架周围的流场特性,使得积雪量减少了73.6% ,有效地减少了转向架区域的积雪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号