首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
半固态A356铝合金流变压铸充填过程的数值模拟   总被引:2,自引:1,他引:1  
建立了半固态A356铝合金浆料的表观粘度触变模型,模拟了米字型压铸件的流变充填过程,并进行了实际流变充填验证.验证性的流变压铸表明,所建立的表观粘度触变模型正确可行,可用来模拟半固态A356铝合金浆料的流变压铸充填过程.数值模拟还表明,压射比压、内浇道浆料的流动速度和浆料温度对半固态A356铝合金的流变压铸充填过程具有重要影响.较大的压射比压、内浇道浆料的流动速度和浆料温度有利于流变充填;流变压铸的内浇道尺寸对半固态A356铝合金的流变压铸充填过程具有重要影响,较大的内浇道尺寸有利于流变充填,对于米字型压铸件而言,合适的压铸工艺参数为:压射比压不小于30MPa,内浇道的流动速度不小于3.00m/s,浆料温度在595℃以上.  相似文献   

2.
赵艳红  孟昭昕  黄勇  刘凤国 《铸造》2016,(4):351-354
对铝合金外壳压铸件进行了半固态压铸充型凝固过程数值模拟,根据模拟结果设计了外壳半固态压铸模,优化出半固态压铸工艺参数:浇注温度575℃,模具预热温度300℃,压射速度2 m/s。探讨了不同电磁搅拌参数下的半固态浆料制备工艺,得到了优化的浆料制备工艺参数。用制造出的外壳压铸模进行了压铸生产,得到了合格的铝合金外壳压铸件,验证了模拟结果的正确性,并应用于生产实际中。  相似文献   

3.
汽车用铝合金半固态零件触变压铸工艺研究   总被引:1,自引:1,他引:0  
针对半固态触变压铸工艺特点,对国产J1128卧式冷室普通液态压铸机的压射系统和模具系统进行了结构改进,对压铸工艺参数进行了优化选择,并采用半固态专用铝合金AlSi6Mg2和商用铝合金A357开展了大量半固态触变压铸试验研究.结果显示:半固态触变压铸工艺与普通液态压铸有很大的不同,在压射室和模具预热温度分别为100℃和250℃,低压压力为4.0MPa,射料二速工作压力为12MPa,增压压力为20MPa,快压射速度为1.4m/s条件下可获得冲型完好的汽车用铝合金半固态零件.  相似文献   

4.
针对半固态触变压铸工艺特点,对国产J1128卧式冷室普通液态压铸机的压射系统和模具系统进行了结构改进,对压铸工艺参数进行了优化选择,并采用半固态专用铝合金AlSi6Mg2和商用铝合金A357开展了半固态触变压铸试验研究.结果表明: 半固态触变压铸工艺与普通液态压铸有很大的不同,在压射室和模具预热温度分别为100 ℃和250 ℃,低压压力为4.0 MPa,射料二速工作压力为12 MPa,增压压力为20 MPa,快压射速度为1.4 m/s条件下可获得充型完好的汽车用铝合金半固态零件.  相似文献   

5.
采用超声振动热平衡法、直接热平衡法以及传统铸造工艺制备A356合金浆料,并以相同的浇注温度、模具温度、压射压力和压射速度进行压铸成形;对压铸件的圆心处和边缘处取样观测金相组织,并在压铸件的相同部位取样进行拉伸试验。通过对比分析,研究不同工艺条件下压铸件的金相组织及力学性能。结果表明,超声振动热平衡法半固态工艺条件下,压铸件的金相组织最细小、圆整、均匀,综合力学性能最好;直接热平衡法工艺条件下的次之;经T6热处理后压铸件的综合力学性能得到显著提高。  相似文献   

6.
《铸造》2017,(6)
利用铸造模拟软件ProCAST对ADC12铝合金汽车转向器的压铸充型过程进行数值模拟,包括充型时间、温度场和卷气顺序对压铸件质量的影响,获得较优的压铸工艺参数(浇注温度650℃、模具温度220℃、快压射速度3.0 m/s和慢压射速度0.3 m/s),为提高铝合金汽车转向器的压铸质量提供依据。用优化工艺参数制备的压铸件内部质量良好,无明显夹杂和孔洞等缺陷。  相似文献   

7.
ZL101过流冷却转移法半固态压铸工艺及性能研究   总被引:1,自引:0,他引:1  
采用倾斜管过流冷却-转移法生产半固态流变压铸件,研究了压铸工艺对ZL101铝合金半固态流变压铸件性能的影响,以及半固态压铸件经T6热处理之后性能的改变.对比研究了液态与半固态压铸件的力学性能.结果表明,在浇注温度为595℃、压射速度为1.8 m/s时,压铸件性能最佳,此时较浇注温度为630℃的液态压铸件的抗拉强度提高了11%.经热处理的半固态压铸件抗拉强度与伸长率都得到改善.液态与半固态压铸件试样的拉伸断口为准解理断裂,经热处理的半固态压铸件试样的拉伸断口为韧性断裂.  相似文献   

8.
通过建立A356铝合金的半固态表观粘度模型,采用计算机模拟方法对A356铝合金轮毂半固态挤压铸造成形工艺进行了研究.通过分析挤压速度、半固态浆料充填温度及模具预热温度对铝合金轮毂半固态成形性能的影响,探讨了不同条件下的金属流动特点和温度分布规律.结果表明,对该尺寸铝合金轮毂的最佳成形工艺:半固态浆料充填温度为600℃,模具预热温度为300℃,挤压速度为5 mm/s,保压时间为25 s.  相似文献   

9.
试验研究了压射比压和压射速度对半固态A356铝合金流变压铸充填性的影响.试验结果表明:压射比压和试片的壁厚对新型方法制备的半固态A356合金浆料的充填性影响较大,试片壁厚越大,压射比压越大,型腔越容易充满;为了保证充满型腔,对于10 mm的试片,压射比压应≥15 MPa,而对于5 mm的试片,压射比压应≥20 MPa.压射速度对半固态A356合金浆料充填性也具有较大的影响,较高的压射速度有利于半固态A356铝合金浆料的充填;为了保证充满型腔,对于10 mm的试片,压射速度应≥0.384 m/s,而对于5 mm的试片,压射速度应≥1.152 m/s.流变压铸试片的组织分布很均匀,利于获得高质量的半固态A356合金压铸件.  相似文献   

10.
A357铝合金半固态流变压铸数值模拟   总被引:3,自引:2,他引:1  
利用商业模拟软件Flow-3D对A357铝合金半固态流变压铸过程进行了研究。对不同压射压力和不同压射速度下的半固态流变充型流动状态及气孔分布进行了模拟,并对其凝固过程进行了模拟,最后通过试验对其进行验证。模拟及试验结果显示,随着压射压力与压射速度的增大,半固态熔体流动状态从层流向紊流过渡;同时压射压力和压射速度的增大对气孔分布也有一定的影响。模拟结果与试验结果基本保持一致,表明利用Flow-3D对压铸工艺进行参数优化是可行的,实现了压铸件性能提高的目的。  相似文献   

11.
Combined with theoretical evaluation,an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail,then,the semi-solid die castings and liquid die castings were heat treated with the optimized process.The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings,especially the strengthening degree of heat treated semi-solid die castingsis much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%,and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings.The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2 Si) and formation of GP Zone.  相似文献   

12.
利用ProCAST软件对A356合金半固态压铸件下壳体进行耦合数值模拟。结果表明,在模具温度为220℃,充型温度为590℃、压射速度为5m/s时,半固态浆料充型平稳,温度场分布均匀,减少了缩孔、缩松等缺陷,为A356合金半固态压铸成形工艺的制定和优化提供了依据。采用此工艺参数,生产出合格铸件。在该件上所需部位可以钻螺纹孔,与其他零件装配使用。通过试验,验证了数值模拟优化工艺参数的合理性。  相似文献   

13.
半固态金属的组织及流变特性,早在1971年就被美国麻省理工学院(MIT)的Flemings教授所指导的研究团队,在进行实验时偶然间所发现。但半固态铝合金商业应用的产品,除了美国AEMP及瑞士Buhler公司分别拥有及发表铝轮圈的半固态成形技术之外,大部分仍停留在中小型铸件的生产。为了适应汽车轻量化需求,由作者的服务单位与(台湾)工业技术研究院所合组的研究团队,在历经约三年的合作,从半固态触变铸造(Thixocasting)的球化坯料(slug)、再加热技术至流变铸造(Rheocasting)的半固态浆料(Slurry),进行了多项实验,最终验证了半固态技术应用于大型铝合金铸件(轮囤)生产的可行性。自2005年起,使用A356合金材料改良流变铸造法及2700t的实时射控压铸机的生产线,成功产出汽车用大尺寸半固态铝轮圈,并获得较传统铸造为佳的力学性能,有效达成零部件轻量化需求。  相似文献   

14.
Rheo-squeeze casting of semi-solid A356 aluminum alloy slurry   总被引:1,自引:0,他引:1  
The effect of pouring temperature, electromagnetic stirring power and holding process on semi-solid A356 aluminum alloy slurry was investigated, then the slurry was squeeze-cast. The results show that when the pouring temperatures are properly above the liquidus line, for example 630-650 °C, the slurry with spherical primary α(Al) grains can be prepared under the stirring power of 1.27 kW. The slurry is then homogeneously held for a short time, and the primary α(Al) grains are further ripened and distributed evenly in the slurry. The results of the rheo-squeezed casting experiments show that the injection specific pressure has a great effect on the filling ability of the semi-solid A356 aluminum alloy slurry, and the higher the injection specific pressure is, the better the ability for the slurry to fill the mould cavity is. When the injection specific pressure is equal to or above 34 MPa, the whole and compact rheo-squeezed castings can be obtained. The microstructure of the castings indicates that the shape, size and numbers of the primary α(Al) grains in different parts of the castings are highly consistent. After being held at 535 °C for 5 h and then aged at 155 °C for 12 h, the ultimate strength of the rheo-squeezed castings can reach 300-320 MPa, the yield strength 230-255 MPa, and the elongation 11%-15%.  相似文献   

15.
半固态A356合金的流变压铸充填性与组织分布   总被引:3,自引:5,他引:3  
试验研究了压射比压和压射速度对半固态A356铝合金流变压铸充填性的影响。试验结果表明:压射比压和试片的壁厚对新型方法制备的半固态A356合金浆料的充填性影响较大,试片壁厚越大,压射比压越大,型腔越容易充满;为了保证充满型腔,对于10mm的试片,压射比压应≥15MPa,而对于5mm的试片,压射比压应≥20MPa。压射速度对半固态L356合金浆料充填性也具有较大的影响,较高的压射速度有利于半固态A356铝合金浆料的充填;为了保证充满型腔,对于10mm,的试片,压射速度应≥0.384m/s,而对于5mm的试片,压射速度应≥1.152m/s。流变压铸试片的组织分布很均匀,利于获得高质量的半固态A356合金压铸件.  相似文献   

16.
复杂零件半固态压铸充型过程的计算机仿真   总被引:6,自引:1,他引:6  
张恒华  邵光杰  许珞萍 《铸造》2003,52(10):769-772
使用二次开发的ANSYS有限元软件,对铝合金半固态压铸复杂件的充型与模具内浇道形貌之间关系进行详细的计算机仿真。首先对仿真模型进行了合理的简化处理,然后分别模拟和分析了压铸速度及浆料粘度等主要工艺参数对压铸件质量的影响,进而对半固态模具的内浇道进行改进。X射线探伤证实,铝合金半固态压铸造模具的内浇道是影响其性能的关键因素,同时也表明,文中提出的简化仿真模型可以较好地仿真铝合金复杂件半固态压铸造过程。  相似文献   

17.
利用商业软件Flow-3D,模拟了A356合金半固态触变压铸和普通压铸的充型流动过程。模拟结果表明:相同模具结构中的半固态压铸和普通压铸充型过程,半固态流动平稳,普通压铸由于湍流流动,因而容易出现气孔、卷气夹杂等缺陷。半固态触变压铸和普通压铸具有相同的流动通道。  相似文献   

18.
采用数值模拟方法分析了半固态铝合金的表观粘度及浇注温度对轴承支架铸件压铸充型和凝固过程的影响。结果表明,半固态铝合金的充型速度随其表观粘度的增加而显著下降,而浇注温度对充型速度的影响与液态压铸时的一致。铸件同一部位的凝固温度随半固态铝合金浆料充型时的表观粘度增加而提高。凝固后铸件内未出现铸造缺陷。  相似文献   

19.
The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号