首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用溶胶–凝胶法合成了无Co的双钙钛矿SmBaFeNiO5+δ(SBFN)阴极材料,并引入Sm0.2Ce0.8O1.9 (SDC)电解质材料制备复合阴极,降低热膨胀系数和优化性能。研究表明:SBFN在30~900℃的平均热膨胀系数为14.1×10-6 K-1,SBFN–SDC15 (质量比为85:15)复合阴极的平均热膨胀系数降为12.0×10-6 K-1。SBFN在425℃时电导率具有最大值,为48 S/cm。700℃时SBFN|SDC|SBFN对称电池的界面极化阻抗(Rp)为0.386Ω·cm2。在SBFN中引入SDC可以改善其电化学性能,SBFN–SDC10 (质量比为90:10)复合阴极具有最低的Rp,为0.224Ω·cm2。800℃时,以SBFN和SBFN–SDC10为阴极的单电池,最大功率密度分别为367.6 m W/cm2和507.8 m W/cm2。  相似文献   

2.
研究了固体氧化物燃料电池Sr2Fe Mo0.6Mg0.25Al0.15O6 (SFMMA)双钙钛矿阳极的晶体缺陷结构、热膨胀性能、电荷传输特性、氧化还原稳定性以及电化学性能。结果表明:SFMMA室温下为I 4/m四方结构,400℃时材料转变为F m 3 m立方结构。SFMMA材料的实际晶体结构式为Sr2(Fe0.75Mg0.25)(Mo0.6Fe0.25Al0.15)O6-δ,材料晶格中含有大量反位缺陷FeB’以及—FeB—O—FeB’—键,有利于氧空位的形成及氧离子的迁移扩散。SFMMA的热膨胀系数在25~400℃和400~900℃范围内分别为13.0×10–6K–1和17.6×10–6K–1,在氢气气氛下600~900℃温度范围内电导率超过35 S·cm–1,并且具有较快的氧表面交换特性以及非常优异的氧化还原循环结构稳定性。在900,850,800℃和750℃时,湿润H2(3%H2O,50 m L/min)气氛中,SFMMA/La0.4Ce0.6O2(LDC)/La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)/LDC/SFMMA对称半电池面比电阻分别为0.096,0.142,0.239Ω·cm2和0.447Ω·cm2。以SFMMA为阳极组装电解质支撑型单电池SFMMA/LDC/LSGM (300μm)/Pr Ba0.5Sr0.5Co1.5Fe0.5O5+δ,850℃时电池最大功率密度可达886 m W·cm–2。  相似文献   

3.
面向高性能固体氧化物燃料电池(SOFC)低成本制备及长寿命运行需求,提出了一种致密氧化铈基隔离层的制备方法。将阳极支撑半电池的Y2O3稳定ZrO2(YSZ)电解质浸没于硝酸钆和硝酸铈水溶液中,并在180℃水热条件下处理36 h,获得了原位生长的致密Gd2O3掺杂CeO2(GDC)薄膜;进一步将其与La0.6Sr0.4Co0.2Fe0.8O3–δ阴极在1 075℃共烧结,得到阳极支撑SOFC单电池。结果表明,水热原位生长制备的GDC隔离层连续且致密,组成约为Gd0.044Ce0.956O2–δ,厚度约为0.23μm;阳极支撑单电池在750℃的欧姆阻抗约为0.101Ω·cm2,相较于传统丝网印刷GDC隔离层单电池降低了约38%,在室温加湿氢气燃料下的最大功率密度达到...  相似文献   

4.
靳超 《广州化工》2022,(11):51-54
采用浸渍-原位水热合成法成功将La0.6Sr0.4CoO3(LSC)纳米棒引入到多孔的LSM-YSZ复合阴极中。运用X射线衍射仪、扫描电子显微镜分别对样品的物相结构、微观形貌进行了表征,通过对称电池电化学阻抗谱研究LSC纳米棒引入对阴极电性能的影响。LSC纳米棒的引入改善了LSM-YSZ阴极的性能。LSM-YSZ-LSC(纳米棒)阴极阻抗在700℃为0.39Ω·cm2,而LSM-YSZ-LSC(纳米颗粒)阴极和LSM-YSZ阴极分别为1.28Ω·cm2和1.7Ω·cm2。这主要是由于LSC纳米棒覆盖LSM-SSZ表面,形成网络连接,提供更多的氧还原反应位点。  相似文献   

5.
为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。  相似文献   

6.
固体氧化物燃料电池(SOFC)是一种将储存在燃料和氧化剂中的化学能转化为电能的能量转化装置。SOFC具有高效、产物清洁污染小和噪声低等优点,因此成为近年来国内外研究的热点。混合电子–离子导体的钙钛矿型SOFC电极材料被广泛研究。采用固相法在空气中合成了具有正交钙钛矿结构的Pr Fe0.7Ni0.3O3–δ(PFN)。结果表明:PFN在800℃时,在空气和H2条件下最大电导率分别为46.500 S/cm和0.007 S/cm,在空气气氛条件下的界面极化阻抗为0.08Ω?cm2,在H2气氛条件下阻抗为0.24Ω?cm2,在乙醇气氛条件下的阻抗为1.52Ω?cm2;PFN/La0.9Sr0.1Ga0.8Mg0.2O3–δ(LSGM)/PFN对称电池在800℃时,氢气气氛条件下的最大功率密度为475 m W/cm...  相似文献   

7.
采用3种不同添加方式制备La2O3改性的Al2O3材料La-Al2O3。La-Al2O3分别经500 ℃、1 000 ℃和1 200 ℃焙烧,采用物理吸附、X射线衍射和荧光光谱等对高温处理的La-Al2O3进行比表面积和结构表征。结果表明,La2O3的添加能有效抑制Al2O3在高温条件下向热力学稳定态α-Al2O3转变,同时提高高温处理后La-Al2O3比表面积,使Al2O3热稳定性得到明显提高。在3种La2O3添加方式中,La(NO3)3浸渍法效果最为显著,制得的La-Al2O3(N)材料经1 200 ℃焙烧4 h的比表面积为30 m2·g-1,是未经改性的Al2O3样品经同等温度焙烧比表面积的2.2倍。  相似文献   

8.
以Zr(NO34·5H2O和CH3COOLi·2H2O为原料,采用湿化学法,将Li2ZrO3包覆在LiNi0.8Co0.1Mn0.1O2锂离子电池正极材料的表面,研究Li2ZrO3不同包覆比例对LiNi0.8Co0.1Mn0.1O2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li2ZrO3层均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面,其厚度约为8 nm。与纯相相比,1%(质量分数) Li2ZrO3包覆的LiNi0.8Co0.1Mn0.1O2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g-1、100次循环之后放电比容量为169.5 mA·h·g-1,其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li2ZrO3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

9.
通过溶液燃烧法成功合成了一系列非活性K+掺杂的尖晶石型(KxCoCrFeMnNi)(3/(5+x))O4(x=0,0.5,1,1.5)高熵氧化物锂离子电池负极材料,系统研究了K+掺杂对结构和储锂性能的影响。结果表明:随着K+掺杂量的增加,均可制备出具有单一尖晶石结构的纳米晶粉体材料,其中等摩尔K+掺杂的(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4高熵氧化物负极材料具有最高的比容量、优异的循环稳定性和倍率性能。(K1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)3O4<...  相似文献   

10.
以原位析出纳米Co–Fe颗粒的La0.4Sr0.6Co0.2Fe0.7Nb0.1O3–δ(LSCFN)钙钛矿为阳极,考察了直接使用CO–CO2燃料时的阳极结构演变、单电池电化学性能和稳定性。结果表明:在CO燃料中,ABO3钙钛矿结构LSCFN转变为A2BO4层状钙钛矿结构;在CO中引入少量CO2后,LSCFN则以单钙钛矿结构为主,并有效抑制了碳沉积。单电池在CO燃料下的最大功率密度可达0.6 W/cm2(850℃),并在n(CO):n(CO2)=5:1(摩尔比)燃料下运行超过100 h。  相似文献   

11.
利用浸渍法制备了以La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3–δ)(LSCF)为催化相、Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)为骨架的纳米结构复合阴极,并将LSCF–SDC复合阴极在600℃保温500 h,随后再用HCl腐蚀,研究了LSCF–SDC纳米结构复合阴极性能衰减的机理。结果表明:LSCF–SDC纳米结构复合阴极在600℃保温处理500 h后,阴极的极化电阻从0.21Ω·cm~(–2)增加到0.25Ω·cm~(–2),增加了19%,对其腐蚀处理后阴极极化电阻降为0.15Ω·cm~(–2),阴极催化活性的降低主要与氧在阴极表面的吸附与解离过程有关;阴极相组成和表观形貌没有明显的变化;保温处理后Sr~(2+)在阴极表面以SrO的形式富集。  相似文献   

12.
分别采用凝胶浇注法和甘氨酸–硝酸盐法制备La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)粉体与Sm0.2Ce0.8O1.9(SDC)粉体,随后制备出不同比例的LSCF–SDC复合阴极。用X射线衍射分析粉体的化学稳定性,用扫描电子显微镜观察复合阴极的微观结构,在500~800℃范围内测量其热膨胀系数和电导率。采用丝网印刷法将LSCF–SDC涂覆在SDC电解质片上,在1100℃烧结4h。用交流阻抗法在600~800℃范围内测量不同成分的LSCF–SDC复合阴极和SDC电解质的交流阻抗谱。结果表明:LSCF和SDC粉体具有良好的化学相容性,烧结体具有多孔结构,LSCF–SDC复合阴极与SDC电解质可形成良好的接触界面。SDC的加入在降低阴极材料的热膨胀系数的同时还保持了其本身较高的电导率,在中温范围内,电导率达到500S/cm以上。复合阴极的极化电阻随着SDC的含量增加而减小,当SDC含量为30%时,复合阴极的极化电阻最小,在700℃空气中测试得到的界面电阻为0.32Ω·cm2。  相似文献   

13.
魏炜  乔智威  李树华  苗梦涵  梁红  彭峰 《化工学报》2019,70(12):4654-4663
采用柠檬酸-EDTA络合法制备了纳米钙钛矿催化剂La0.9Sr0.1Co1-xFexO3,催化剂具有较好的同时去除NO和碳烟(soot)催化活性,其中La0.9Sr0.1Co0.7Fe0.3O3展现出最佳的催化活性,其在380.0℃时NO转化率为32.5%,soot最大燃烧速率温度(Tm)为368.5℃。H2-程序升温还原(H2-TPR)和NO-程序升温脱附(NO-TPD)结果表明, Fe掺杂能显著提高催化剂低温还原性能、表面氧物种活性及NO吸附性能,这有利于其改善催化活性。X射线光电子能谱(XPS)结果表明,Fe掺杂能增加催化剂表面吸附氧浓度和高价离子(Co4+),这对提高催化氧化能力至关重要。采用颗粒物捕集器(DPF)作为载体涂覆CeO2涂层用于负载La0.9Sr0.1Co0.7Fe0.3O3催化剂进行柴油机台架实验,结果表明该催化剂具有较好的同时去除NOx和soot催化活性,最大NO转化率为23.0%,Tm为341.0℃,表明Fe掺杂对提高催化活性至关重要。  相似文献   

14.
以Co(NO3)2·6H2O和尿素为原料制备了9种Co3O4催化材料,考察了其对水中酮基布洛芬(KTP)的催化臭氧氧化降解效能。结果表明,与单独臭氧氧化相比,所制备的Co3O4对水中KTP的催化臭氧氧化降解率提高了12.0%~63.8%,且在n[Co(NO3)2·6H2O]:n(尿素)=4:1、煅烧温度400℃下制备得到的Co3O4催化剂催化活性最高。SEM、XRD、FTIR、XPS、BET等表征分析显示,该Co3O4催化剂表面呈覆盖细小微粒的球状颗粒,晶相为立方相,且表面含有丰富的羟基,表面羟基密度为1.075×10-5 mol/m2。机理研究证实,Co3O4对水中KTP的非均相催化臭氧氧化降解...  相似文献   

15.
采用La掺杂和固态电解质Li1.3Al0.3Ti1.7(PO4)3包覆对LiNi0.9Co0.05Mn0.05O2进行改性,研究掺杂和包覆对LiNi0.9Co0.05Mn0.05O2结构与性能的影响。结果表明:适量的La掺杂可以降低LiNi0.9Co0.05Mn0.05O2材料的离子迁移阻抗,提高Li+扩散系数,稳定材料的结构,从而提高材料的放电比容量及循环性能,当La掺杂量为0.1 wt%时,首次放电比容量为180.1 mAh·g-1,经过100次循环后的容量保持率高达93.34%,远高于未掺杂样品的86.20%。Li1.3Al0.3Ti1....  相似文献   

16.
张睿  吴元欣  何云蔚  艾常春 《化工学报》2015,66(8):3177-3182
采用氢氧化物共沉淀法制备了锂离子电池正极材料前驱体(Ni0.5Co0.2Mn0.3)(OH)2,并用流变相反应法合成了Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池正极材料。运用X射线粉末衍射和恒电流充放电对产物进行了结构和电化学性能的表征,结果表明Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2具有标准的层状α-NaFeO2结构,样品为1 μm左右的片状一次颗粒聚集而成的类球形二次颗粒。掺杂1%(质量分数)Li3PO4的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池在0.1C的倍率下首次放电比容量达到188.6 mA·h·g-1(2.2~4.6 V vs Li+/Li),30次循环后容量保持率为 92.9%。循环伏安、交流阻抗测试表明Li3PO4的掺杂可减少充放电过程中电解液和电极之间的电荷传递电阻和锂离子扩散电阻,减小极化作用,从而提升了Li(Ni0.5Co0.2Mn0.3)O2材料的电化学性能。  相似文献   

17.
采用固体电解质代替具有可燃性的液态电解液可有效解决当今锂离子电池的安全问题。然而,固态电池中的电极/电解质的固-固接触通常具有较大的界面阻抗,从而导致电池极化增加。采用聚偏氟乙烯(PVDF)基固体电解质作为正负极界面缓冲层,可有效地解决固体电解质与电极的高界面阻抗问题,使正极界面单位面积阻抗从1 716Ω/cm2降至213Ω/cm2。在负极处,PVDF可提供良好的弹性支撑,使负极界面单位面积阻抗从1 135Ω/cm2降至109Ω/cm2。此外,金属锂对称电池的直流极化测试表明,经过PVDF修饰后负极界面稳定性显著提高。最后,组装的钴酸锂/金属锂软包电池,正负极界面均经PVDF修饰后,电池能量密度可达到336 W·h/kg。1C条件下循环300次后,容量保持率可从30.7%提升至83.3%。  相似文献   

18.
固体氧化物电解池可以清洁、高效地将电能和热能转化为化学能,在新能源领域具有广阔的应用前景。La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM)具有较好的高温稳定性,但离子电导率相对较低,在电解过程中电催化性能不足。本文将LSCM与具有较高离子导电性的Ce0.8Gd0.2O2-δ(GDC)复配构造复合电极,并以共负载的形式在复合电极中浸渍纳米Ni、Cu金属催化剂提高电极的水蒸气吸附和转化能力,Ni、Cu共负载能够同时保留单一Ni或Cu负载对电极电解机制的改善。结果表明,Ni、Cu共负载相比于单一Ni或Cu负载电极在还原性气氛下具有更高的电化学性能,在还原性气氛和800℃工作温度下,镍铜质量比2∶8的负载电极在-0.1 V过电位下的电流密度可达到2.36 A·cm-2,极化阻抗为0.92Ω·cm2。  相似文献   

19.
采用原位浸渍法一步烧结成型制备了NiO-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)/SDC/LSCF管状结构阳极支撑型SDC电解质膜固体氧化物燃料电池(SOFCs)。以加湿H2(约含有体积分数为3%的水)为燃料,空气为氧化剂,研究了电池的电化学性能、热循环性能和工作电压下运行的稳定性。结果表明:电池在600、650、700、750、800℃的开路电压分别为1.084、1.074、1.067、1.058、1.046 V;最大输出功率密度分别为0.12、0.25、0.38、0.54和0.70 W·cm-2。单电池在700℃和0.7 V连续放电测试过程中稳定运行,没有明显的下降和衰退。单电池经历了11次热循环,输出功率稳定,能够经受住重复启动考验。  相似文献   

20.
激光作为一种瞬时高能的加工工艺,近年来逐渐实现多元化的应用,能够大幅缩短材料的制备时长,降低时间成本。基于溶胶凝胶法,通过激光加热辅助制备(La0.7Sr0.3)0.93(Ti0.93Co0.07)O3钙钛矿粉体,该工艺可使粉体制备时长由十几小时缩短至几十秒,且组织性能表现优异。通过X射线衍射(XRD)和扫描电镜(SEM)表征发现,激光加热后粉体的衍射峰锐化且无其他杂质峰生成,粉体表面致密,呈阶梯状。电化学测试结果表明:激光加热后CV曲线面积增大,起始电位为0.430 V,当电位为0.8 V时电流密度达到200.1 mA/cm2,是高温煅烧后粉体电流密度的2.2倍,内阻为0.941 17Ω·cm2,有着良好的氧化还原性能及OER催化活性。激光加热能够代替高温煅烧作为一种稳定钙钛矿晶型结构的高效制备工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号