首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
羟基氧化镍的电解制备,结构表征和电化学性能研究   总被引:1,自引:0,他引:1  
NiOOH was prepared by one-step electrolysis of spherical Ni(OH)2 and the effects of electrolysis parameters were examined. The highly pure NiOOH was obtained after electrolysis at a current density of 60mA.g^-1 and 30℃ with anodic potential controlled in the range of 1.73-1.85V (vs. Zn/ZnO) for 360min. The NiOOH samriles were characterized bv X-ray oowder diffraction (XRD) and scanning electron microscope (SEM) analysis.Resuits indicate that the electrolysis product is spherical NiOOH doped with graphite. Charge and discharge tests show that the prepared NiOOH offers a discharge capacity of over 270mAh·g^-1 at current density of 30mA·g^-1 and can be directly used as cathode material of alkaline Zn/NiOOH batteries. Galvanostatic charge/discharge and cyclic voltammetry (CV) tests reveal good cycling reversibility, of the NiOOH electrode.  相似文献   

2.
A supercritical hydrothermal method was employed to prepare sub-micrometer LiFePO4 particles with high purity and crystallinity. The structure and morphology of LiFePO4 particles were characterized by X-ray diffraction and scanning electron microscope. The electrochemical tests were carried out to determine the reversible capacity, rate and cycling performance of the LiFePO4 particles as cathode material for lithium ion battery. Experimental results show that solvent and calcining time have significant effects on purity, size and morphology of LiFePO4 particles. Mixed solvent contained deionized water and ethanol is conducive to synthesize smaller and more uniform particles. The size of LiFePO4 particles as-prepared is about 100-300 nm. The specific discharge capacities of the LiFePO4 particles are 151.3 and 128.0 mA. h. g-1 after first cycle at the rates of 0.1 and 1.0 C, respectively. It retains 95.0% of the initial capacity after 100 cycles at 1.0 C.  相似文献   

3.
A statistically based optimization strategy is used to optimize the carbothermal reduction technology for the synthesis of LiFePO4/C using LiOH,FePO4 and sucrose as raw materials.The experimental data for fitting the response are collected by the central composite rotatable design(CCD).A second order model for the discharge ca-pacity of LiFePO4/C is expressed as a function of sintering temperature,sintering time and carbon content.The ef-fects of individual variables and their interactions are studied by a statistical analysis(ANOVA).The results show that the linear effects and the quadratic effects of sintering temperature,carbon content and the interactions among these variables are statistically significant,while those effects of sintering time are insignificant.Response surface plots for spatial representation of the model illustrate that the discharge capacity depends on sintering temperature and carbon content more than sintering time.The model obtained gives the optimized reaction parameters of sinter-ing temperature at 652.0 ℃,carbon content of 34.33 g?mol-1 and 8.48 h sintering time,corresponding to a dis-charge capacity of 150.8 mA·h·g-1.The confirmatory test with these optimum parameters gives the discharge ca-pacity of 147.2 and 105.1 mA·h·g-1 at 0.5 and 5 C,respectively.  相似文献   

4.
Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon(AC) samples after thermal modification were prepared by using muffle furnace. The phenol adsorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC samples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the experimental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach144.93 mg·g-1which is higher than that of the raw sample, i.e. 119.53 mg·g-1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.  相似文献   

5.
In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g-1,the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g-1,and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g-1 in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.  相似文献   

6.
In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m~2·g~(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g~(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.  相似文献   

7.
Mesoporous TiO2-B/anatase microparticles have been in-situ synthesized from K2Ti2O5 without template. The TiO2-B phase around the particle surface accelerates the diffusion of charges through the interface, while the anatase phase in the core maintains the capacity stability. The heterojunction interface between the main polymorph of anatase and the trace of TiO2-B exhibits promising lithium ion battery performance. This trace of 5%(by mass) TiO2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA·h·g?1, giving 20%improvement com-pared to the anatase counterpart. Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·g?1, which is better than 162 mA·h·g?1 for single phase anatase or 159 mA·h·g?1 for TiO2-B. The mesoporous TiO2-B/anatase microparticles also show superior rate performance with 100 mA·h·g?1 at 40 C, increased by nearly 25%as compared to pure anatase. This opens a possibility of a general design route, which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.  相似文献   

8.
改性大豆皮吸附剂对Pb2+的生物吸附性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
Using soybean hull residue after the soluble dietary fiber being removed during the soybean processing industry as crude material,a novel absorbent,modified soybean hulls,is prepared.Its adsorption behavior for Pb2+ is studied.The adsorbent has a large and efficient adsorption capacity for Pb2+,up to 20% of the mass of dry ad-sorbent.Its maximum adsorption capacity for Pb2+ reaches 217 mg·g-1 at initial Pb2+ concentration of 2000 mg·L-1,which is twice that of yeast absorbent and threefold greater than that of chitosan absorbent.The adsorption ability is sensitive to pH value in the solution and the optimal pH for adsorption of Pb2+ is 7.0.In the presence of other metal ions (Ca2+,Mg2+ and Na+) in the solution,their effect on the adsorption capacity for Pb2+ is not obvious.After 5 cy-cles of adsorption,80% adsorption capacity of Pb2+ is maintained.Compared with various available commercial resins,the modified soybean hulls are a plentiful,inexpensive and effective medium for the capture of dissolved Pb2+ from waste streams.  相似文献   

9.
Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299mg·g-1. The morphology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area, larger pore volume and appropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO.  相似文献   

10.
A facile eco-friendly hydrothermal route(180 °C, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO_2(OH) microspheres without the aid of any organic additive, surfactant or template, by using the abundant MgCl_2·6 H_2 O, H_3BO_3 and NaOH as the raw materials. The as-obtained porous microspheres exhibit a specific surface area of 94.752 mg·g~(-1), pore volume of 0.814 cm3·g~(-1), and ca. 84.0% of which have a diameter of 2.25–3.40 μm. The thermal decomposition of the porous MgBO_2(OH) microspheres(650 °C,2.5 °C·min~(-1)) leads to the porous Mg_2B_2O_5 microspheres with well-retained morphology. When utilized as the adsorbents for the removal of CR from mimic waste water, the present porous MgBO_2(OH) microspheres exhibit satisfactory adsorption capacity, with the maximum adsorption capacity q~(-1) mof 309.1 mg·g, much higher than that derived from most of the referenced adsorbents. This opens a new window for the facile green hydrothermal synthesis of the hierarchical porous MgBO_2(OH) microspheres, and extends the potential application of the 3 D hierarchical porous metal borates as high-efficiency adsorbents for organic dyes removal.  相似文献   

11.
Considering limited success in target-hitting discharge from alcohol industry, our attention was directed toward a recycling use of distillery spentwash (DS) in cassava bioethanol production by using a two-stage up-flow anaerobic sludge blanket bioremediation (TS-UASBB). With the TS-UASBB, , COD, N and P in the effluent from the DS degraded significantly and their concentrations were kept at 0.2 g•L1, 2.0 g•L1, 1.0 g•L1 and 15 mg•L1, respectively, in 13 batch processes for water-recycled ethanol fermentation. With the effluent used directly as dilution water, no heat-resistant bacteria were found alive. The thirteen-batch ethanol production individually achieved 10% after 48 h fermentation. The starch utilization ratio and total sugar consumption were 90% and 99.5%, respectively. The novel water-recycled bioethanol production process with ethanol fermentation and TS-UASBB has a considerable potential in other starchy and cellulosic ethanol production.  相似文献   

12.
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation per-formance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g•m2•h1 and 26.1, respec-tively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.  相似文献   

13.
海藻酸镧颗粒除氟研究:吸附剂物性和吸附机理   总被引:1,自引:0,他引:1       下载免费PDF全文
Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.  相似文献   

14.
Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.  相似文献   

15.
The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated. The experiments were conducted using a wide range of initial fluoride concentrations (0.5 to 180 mg•L1 at pH ~7.0) and an adsorbent dose of 1.0 g•L1. The application of Langmuir and Freundlich adsorption isotherm models (linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap. Experimental data on low equilibrium concentrations (0.1 to 5.0 mg•L1) was in line with both Langmuir and Freundlich isotherm models, whereas that of high equilibrium concentrations (5.0 to 150 mg•L1) was more in line with the Freundlich isotherm model. A new Langmuir- Freundlich function was used for the entire concentration gap, as well as for low and high concentrations.  相似文献   

16.
The solubilities of the quinary system Na + ,K + ,Mg 2+ //Cl ,NO 3 -H2O and its two quaternary subsystems, Na + ,K + ,Mg 2+ //NO 3 -H2O and K + ,Mg 2+ //Cl ,NO 3 -H2O,were studied by isothermal method at 25°C and their phase diagrams were plotted.In the equilibrium phase diagram of quaternary system Na + ,K + ,Mg 2+ //NO 3 -H2O, there are one invariant point,three univariant curves and three regions of crystallization with one salt:NaNO3, KNO3 and Mg(NO3)2·6H2O.In the equilibrium phase diagram of quaternary system K + ,Mg 2+ //Cl ,NO 3 -H2O,there are three invariant points,seven univariant curves and five regions of crystallization with one salt:KNO3,KCl, Mg(NO3)2·6H2O,MgCl2·6H2O and KCl·MgCl2·6H2O.In the equilibrium phase diagram of the quinary system Na + , K + ,Mg 2+ //Cl ,NO 3 -H2O,there are four invariant points,and seven regions of crystallization with one salt:NaCl, KCl,NaNO3,KCl·MgCl2·6H2O,KNO3,MgCl2·6H2O and Mg(NO3)2·6H2O.  相似文献   

17.
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.  相似文献   

18.
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.  相似文献   

19.
The effects of L-cysteine concentration on biohydrogen production by Enterobacterium Bacterium M580 were investigated in batch cultivation.The experimental results showed that L-cysteine could enhance the cell growth,hydrogen production rate and hydrogen yield when its concentration was less than 500 mg·L-1,while it had negative effects when its concentration was higher than 500 mg·L-1.The hydrogen production was the highest 1.29 mol·mol-1(H2/glucose) when 300 mg·L-1L-cysteine was added into the culture,and the yield was 9.4% higher than that in the control.The oxidation-reduction potential(ORP) ,which was influenced by L-cysteine,also affected hydrogen production.The ORP values were in the range-300 mV to-150 mV when the L-cysteine concentration was higher than 500 mg·L-1.Although the ORP in this range was favorable for hydrogen production,it was not suitable for the biomass growth.Hence,less hydrogen was produced.When the L-cysteine concentration was lower than 500 mg·L-1,the ORP was more suitable for both biomass growth and hydrogen production.In addition,at least 91%glucose was consumed when L-cysteine was added to the culture media,compared to the 97.37% consumption without L-cysteine added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号