首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对多移动机器人运动协调中的动态安全避碰问题,在分析速度障碍法原理的基础上,设计用于机器人之间相互避让的互动速度法则,并通过制定机器人的碰撞时间、碰撞距离因子对构型障碍的大小进行实时调整,把运动障碍物、动力学约束下的多步可达窗口、目标点都映射到一种速度变化空间当中,使多机器人的动态避碰问题转化为一种最优化问题,并构造了新的优化评价函数;设计了基于改进速度障碍法的机器人动态避碰规划算法。仿真实验表明,该方法有效地克服了碰撞冲突,实现了多机器人之间的运动协调控制,提高了机器人追踪运动目标的快速性。  相似文献   

2.
采用速度合成算法实现AUV对于运动目标的主动避碰,根据前视声纳信息探测到的障碍物距离信息、AUV的运动信息以及航迹规划信息,采用卡尔曼滤波算法预测动态障碍物运动轨迹和碰撞风险,以最小艏向变化为原则通过调整AUV的航向改变AUV前进路径实现避碰.仿真表明,AUV避碰效果理想,实时性好.  相似文献   

3.
实现机器人动态路径规划的仿真系统   总被引:5,自引:2,他引:3       下载免费PDF全文
针对机器人动态路径规划问题,提出了在动态环境中移动机器人的一种路径规划方法,适用于环境中同时存在已知和未知,静止和运动障碍物的复杂情况。采用栅格法建立机器人空间模型,整个系统由全局路径规划和局部避碰规划两部分组成。在全局路径规划中,用快速搜索随机树算法规划出初步全局优化路径,局部避碰规划是在全局优化路径的同时,通过基于滚动窗口的环境探测和碰撞规则,对动态障碍物实施有效的局部避碰策略,从而使机器人安全顺利地到达目的地。仿真实验结果说明该方法具有可行性。  相似文献   

4.
一种基于相对坐标系下移动机器人动态实时避碰的新方法   总被引:8,自引:2,他引:8  
张凤  谈大龙 《机器人》2003,25(1):31-34
本文提出了一种机器人在动态环境下的动态实时避碰的新方法.此方法是基于相 对坐标系,在加速度空间中,通过动态实时地调整机器人自身速度的大小和方向使其离开碰 撞区域,即碰撞危险区域,达到与动、静态障碍物之间的避碰.仿真实验验证了此方法的有 效性.  相似文献   

5.
基于双层模糊逻辑的多机器人路径规划与避碰   总被引:1,自引:0,他引:1  
针对无通信情况下的多机器人系统在未知动态环境下的路径规划问题,设计了基于双层模糊逻辑的多机器人路径规划与动态避碰系统。方向模糊控制器充分考虑了障碍物的距离信息和目标的角度信息,转化为机器人与障碍物的碰撞可能性,从而输出转向角度实现机器人的动态避障;速度模糊控制器将障碍物的距离信息作为输入,将速度因子作为输出,提高了多机器人路径规划与动态避碰系统的效率和鲁棒性。在Pioneer3-DX机器人实体上验证了该系统的可行性。  相似文献   

6.
针对动态环境下的多Agent路径规划问题,提出了一种改进的蚁群算法与烟花算法相结合的动态路径规划方法。通过自适应信息素强度值及信息素缩减因子来加快算法的迭代速度,并利用烟花算法来解决路径规划过程中的死锁问题,避免陷入局部最优。在多Agent动态避碰过程中,根据动态障碍物与多Agent之间的运行轨迹是否相交制定相应的避碰策略,并利用路径转变函数解决多Agent的正面碰撞问题。仿真实验表明,该方法优于经典蚁群算法,能够有效解决多Agent路径规划中的碰撞问题,从而快速找到最优无碰路径。  相似文献   

7.
洪晔  边信黔 《机器人》2007,29(1):88-91
以势场方法的思想为出发点,提出一种基于速度势场的AUV局部避碰仿真方法.根据AUV的特点建立了空间碰撞危险区域和由水平面速度势场和垂直面速度势场组成的三维速度势场.该方法较好地利用了相对速度的信息.仿真实验证明此方法可以使AUV在水下多运动障碍物的环境中得到较好的局部避碰效果,为今后的海试打下了很好的基础.  相似文献   

8.
基于蚁群算法的机器人路径规划   总被引:2,自引:0,他引:2  
针对移动机器人规避障碍和寻找最优路径问题,提出了在复杂环境下移动机器人的一种路径规划方法.采用了栅格法建立了机器人工作平面的坐标系,整个系统由全局路径规划和局部避碰规划两部分组成.在全局路径规划中,用改进蚁群算法规划出初步全局优化路径;局部避碰规划是在跟踪全局优化路径的过程中,通过基于滚动窗口的环境探测和碰撞预测,对动态障碍物实施有效的局部避碰策略,从而使机器人能够安全顺利的到达目标点.仿真实验的结果表明了所述方法能在较短时间内找到最佳路径并规避障碍.  相似文献   

9.
移动机器人在障碍物具有不确定性时的运动规划   总被引:8,自引:1,他引:8  
张成钢  孙茂相 《机器人》2003,25(3):278-281
本文提出了一种移动机器人在实时避碰中对移动障碍物的运动不 确定性的处理方法.该方法主要考虑了两个不确定性来源:移动障碍物运动速度上的不确定 性和运动方向上的不确定性.用概率统计的方法来为不确定性建模.并与一种基于相对速度的 在线避碰方法结合起来对移动障碍物避碰.通过这种方法可以使机器人对移动障碍物的避碰 更有效率.  相似文献   

10.
一种动态环境下移动机器人的路径规划方法   总被引:26,自引:2,他引:26  
朴松昊  洪炳熔 《机器人》2003,25(1):18-21
本文提出了在动态环境中,移动机器人的一种路径规划方法,适用于环境中存 在已知和未知、静止和运动障碍物的复杂情况.采用链接图法建立了机器人工作空间模型, 整个系统由全局路径规划器和局部路径规划器两部分组成.在全局路径规划器中,应用遗传 算法规划出初步全局优化路径.在局部路径规划器中,设计了三种基本行为:跟踪全局路径 的行为、避碰的行为和目标制导的行为,采用基于行为的方法进一步优化路径.其中,避碰 的行为是通过强化学习得到的.仿真和实验结果表明所提方法简便可行,能够满足移动 机器人导航的高实时性要求.  相似文献   

11.
Reactive Path Planning in a Dynamic Environment   总被引:1,自引:0,他引:1  
This paper deals with the problem of path planning in a dynamic environment, where the workspace is cluttered with unpredictably moving objects. The concept of the virtual plane is introduced and used to create reactive kinematic-based navigation laws. A virtual plane is an invertible transformation equivalent to the workspace, which is constructed by using a local observer. This results in important simplifications of the collision detection process. Based on the virtual plane, it is possible to determine the intervals of the linear velocity and the paths that lead to collisions with moving obstacles and then derive a dynamic window for the velocity and the orientation to navigate the robot safely. The speed of the robot and the orientation angle are controlled independently using simple collision cones and collision windows constructed from the virtual plane. The robot's path is controlled using kinematic-based navigation laws that depend on navigation parameters. These parameters are tuned in real time to adjust the path of the robot. Simulation is used to illustrate collision detection and path planning.   相似文献   

12.
On-line Planning for Collision Avoidance on the Nominal Path   总被引:4,自引:0,他引:4  
In this paper a solution to the obstacle avoidance problem for a mobile robot moving in the two-dimensional Cartesian plane is presented. The robot is modelled as a linear time-invariant dynamic system of finite size enclosed by a circle and the obstacles are modelled as circles travelling along rectilinear trajectories. This work deals with the avoidance problem when the obstacles move in known trajectories. The robot starts its journey on a nominal straight line path with a nominal velocity. When an obstacle is detected to be on a collision course with the robot, the robot must devise a plan to avoid the obstacle whilst minimising a cost index defined as the total sum squared of the magnitudes of the deviations of its velocity from the nominal velocity. The planning strategy adopted here is adjustment of the robot's velocity on the nominal path based on the time of collision between the robot and a moving obstacle, and determination of a desired final state such that its Euclidean distance from the nominal final state is minimal. Obstacle avoidance by deviation from the nominal path in deterministic and random environments is based on the work presented here and is investigated in another paper.  相似文献   

13.
Potential field method has been widely used for mobile robot path planning, but mostly in a static environment where the target and the obstacles are stationary. The path planning result is normally the direction of the robot motion. In this paper, the potential field method is applied for both path and speed planning, or the velocity planning, for a mobile robot in a dynamic environment where the target and the obstacles are moving. The robot’s planned velocity is determined by relative velocities as well as relative positions among robot, obstacles and targets. The implementation factors such as maximum linear and angular speed of the robot are also considered. The proposed approach guarantees that the robot tracks the moving target while avoiding moving obstacles. Simulation studies are provided to verify the effectiveness of the proposed approach.  相似文献   

14.
To ensure the collision safety of mobile robots, the velocity of dynamic obstacles should be considered while planning the robot’s trajectory for high-speed navigation tasks. A planning scheme that computes the collision avoidance trajectory by assuming static obstacles may result in obstacle collisions owing to the relative velocities of dynamic obstacles. This article proposes a trajectory time-scaling scheme that considers the velocities of dynamic obstacles. The proposed inverse nonlinear velocity obstacle (INLVO) is used to compute the nonlinear velocity obstacle based on the known trajectory of the mobile robot. The INLVO can be used to obtain the boundary conditions required to avoid a dynamic obstacle. The simulation results showed that the proposed scheme can deal with typical collision states within a short period of time. The proposed scheme is advantageous because it can be applied to conventional trajectory planning schemes without high computational costs. In addition, the proposed scheme for avoiding dynamic obstacles can be used without an accurate prediction of the obstacle trajectories owing to the fast generation of the time-scaling trajectory.  相似文献   

15.
This study focuses on existing drawbacks and inefficiencies of the available path planning approaches within unknown dynamic environments. The drawbacks are the inability to plan under uncertain dynamic environments, non-optimality, failure in crowded complex situations, and difficulty in predicting the velocity vector of obstacles. This study aims (1) to develop a new predictive method to avoid static and dynamic obstacles in planning the path of a mobile robot in unknown dynamic environments in which the obstacles are moving and their speed profiles are not pre-identified, to find a safe path and to react rapidly and (2) to integrate a decision-making process with the predictive behavior of the velocity vector of obstacles by using the sensory system information of the robot. Information on the locations, shapes, and velocities of static and dynamic obstacles is presumed to be unavailable. Such information is determined online using rangefinder sensors. Thus, the robot recognizes free directions that lead it toward its destination and keep it safe and prevent collision with obstacles. Extensive simulations confirm the efficiency of the suggested approach and its success in handling complex and extremely dynamic environments that contain various obstacle shapes. Findings indicate that the proposed method exhibits attractive features, such as high optimality, high stability, low running time, and zero failure rates. The failure rate is zero for all test problems. The average path length for all test environments is 16.51 with a standard deviation of 0.49, which provides an average optimality rate of 89.79%. The average running time is 4.74 s (the standard deviation is 0.26).  相似文献   

16.
许维健  郑文波 《机器人》1990,12(5):40-45
本文应用在障碍时变工作空间中把固定障碍和时变障碍分解的思想.首先就固定障碍问题,为机器人规划一条无碰撞路径,然后通过规划机器人的速度来达到避开活动障碍的目的.本文接着提出在时间-路径空间中以忽略可动障碍时机器人的运动策略为基准策略,根据障碍约束和机器人速度或加速度约束,用有理二次函数来规划机器人避开可动障碍的运动策略.  相似文献   

17.
提出了一种机器人动态路径规划方法。该方法首先采用时间栅格法采标识动态障碍物。建立机器人的环境信息,然后使用免疫算法实现在动态环境下机器人的全局和局部路径规划,达到避障和避碰的目的。文中定义了免疫算法的多因素适应度函数由碰撞系数、距离、转角和安全系数决定。实验表明所提方法可以提高路径规划的效率,满足机器人实时导航要求。  相似文献   

18.
We have been developing MKR (Muratec Keio Robot), an autonomous omni-directional mobile transfer robot system for hospital applications. This robot has a wagon truck to transfer luggage, important specimens, and other materials. This study proposes an obstacle collision avoidance technique for the wagon truck pulling robot which uses an omni-directional wheel system as a safe movement technology. Moreover, this paper proposes a method to reach the goal along a global path computed by path planning without colliding with static and dynamic obstacles. The method is based on virtual potential fields. Several modules with different prediction times are processed in parallel to change the robot response according to its relative velocity and position with respect to the obstacles. The virtual force calculated from each potential field is used to generate the velocity command. Some experiments were carried out to verify the performance of the proposed method. From the experimental results in a hospital it was confirmed that the robot can move along its global path, and reach the goal without colliding with static and moving obstacles.  相似文献   

19.
A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号