首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Discrete‐time low‐gain control strategies are presented for tracking of constant reference signals for finite‐dimensional, discrete‐time, power‐stable, single‐input, single‐output, linear systems subject to a globally Lipschitz, non‐decreasing input nonlinearity and a locally Lipschitz, non‐decreasing, affinely sector‐bounded output nonlinearity (the conditions on the output nonlinearities may be relaxed if the input nonlinearity is bounded). Both non‐adaptive and adaptive gain sequences are considered. In particular, it is shown that applying error feedback using a discrete‐time ‘integral’ controller ensures asymptotic tracking of constant reference signals, provided that (a) the steady‐state gain of the linear part of the plant is positive, (b) the positive gain sequence is ultimately sufficiently small and (c) the reference value is feasible in a very natural sense. The classes of input and output nonlinearities under consideration contain standard nonlinearities important in control engineering such as saturation and deadzone. The discrete‐time results are applied in the development of sampled‐data low‐gain control strategies for finite‐dimensional, continuous‐ time, exponentially stable, linear systems with input and output nonlinearities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
赵彤  谭永红 《计算机仿真》2004,21(8):104-107
为了减轻非线性动态系统中未知迟滞(Hysteresis)的不良影响,该文提出了一类Backlash型迟滞模型。将有限数量不同宽度的Backlash(Matlab/Simulink)算子进行叠加,来仿真执行器中的迟滞非线性动态。用此模型,提出了基于径向基函数神经网络的自适应控制方案,以控制伴有未知迟滞的非线性动态系统。该方案采用了动态逆的思想及伪控制的概念。利用Lyapunov稳定理论,设计了两个鲁棒控制项,保证动态系统的稳定性、系统中所有信号有界和误差收敛到起点的领域内。通过Matlab/Simulink仿真实验,证明了所提出方案的有效性。  相似文献   

3.
针对含非对称间隙环节的Wiener-Hammerstein系统提出了一种新的由输出反馈和间隙动态逆补偿构成的复合控制方案.首先应用参数化分段线性表达式设计了未知参数的整体估计模型,可同时估计线性参数和间隙的特征参数,然后提出了一种新的误差有界的间隙动态逆模型,该模型可使得驱动信号能在间隙的不同线性段之间快速切换,在此基础上设计了鲁棒补偿控制律,同时对输入线性环节采用输出反馈控制构建了复合控制器,通过李亚普诺夫方法证明了闭环系统的稳定性.带减速器的单电机伺服系统模型的仿真结果表明该方法在跟踪精度良好的同时可使系统动态响应满足要求.  相似文献   

4.
Based on extended state observer (ESO), we propose an adaptive robust control (ARC) for a dual motor driving servo system, in which there exist nonlinearities affecting control performance. To apply ESO and estimate the lumped uncertainty online, backlash and friction are analyzed and the nonlinear model of the plant is derived. We achieve several control objectives. First, the bias torque is considered in order to eliminate the effect of backlash. Second, the speed feedback is used to maintain the speed synchronization of motors. Then, to achieve feedforward control, finite‐time ESO is designed to estimate the unknown nonlinearities online. Furthermore, the ESO‐based adaptive robust controller is designed to guarantee L of tracking error by an initialization method, maintaining the transient performance of tracking behavior. Finally, extensive experimental results on a practical test rig validate the effectiveness of our proposed method.  相似文献   

5.
齿隙非线性输入系统的迭代学习控制   总被引:3,自引:1,他引:2  
朱胜  孙明轩  何熊熊 《自动化学报》2011,37(8):1014-1017
针对一类具有输入齿隙特性的非线性系统, 提出一种实现有限作业区间轨迹跟踪的迭代学习控制方法. 在系统不确定项可参数化的情形下, 基于类Lyapunov方法设计迭代学习控制器, 回避了常规迭代学习控制中受控系统非线性特性需满足全局Lipschitz连续条件的要求. 对未知时变参数进行泰勒级数展开, 参数估计采用微分学习律, 并在控制器设计中, 采用双曲函数处理级数展开后的余项以及齿隙特性里的有界误差项, 以保证控制器可导, 且可抑制颤振. 引入一级数收敛序列确保系统输出完全跟踪期望轨迹, 且闭环系统所有信号有界.  相似文献   

6.
This paper is concerned with the tracking control problem for a class of multiple‐input–multiple‐output systems with unmatched disturbances and the unknown additive and multiplicative nonlinearities. The objective is to provide a low‐complexity control solution in the sense that (i) approximating structures are not involved, despite unknown nonlinearities and (ii) iterative calculations of command derivatives are avoided in the backstepping design. A robust adaptive control strategy is proposed to fulfill the task. In the control design, a new‐type adaptive law is first developed to update Nussbaum gains to handle control direction uncertainties, while ensuring Nussbaum gains bounded. Then, the potential robustness of error constraint techniques is exploited to counteract the effects of unknown nonlinearities and disturbances and achieve predefined transient and steady‐state tracking performance. Finally, simulation results are given to illustrate the above theoretical findings.  相似文献   

7.
在控制阀非线性特性研究中,Choudhury模型得到了广泛应用。但在输入信号突变较大时,模型输出的阀位与实际阀位之间存在一定的偏差。此外,Choudhury模型只考虑了阀门非线性特性中的黏滞特性,而没有考虑间隙特性。在详细分析产生偏差原因的基础上,通过总结阀门输出特性的规律,增设多个描述阀门状态的变量,提出了一种新的基于规则的阀门非线性特性离散时间仿真模型。该模型对Choudhury模型进行了改进,同时包括了间隙特性。仿真表明在各种输入信号情况下,阀门非线性模型能够详细描述阀门的物理实际。同时,该模型能够用于计算机控制系统中阀门非线性特性的模拟。  相似文献   

8.
An adaptive low-gain integral control framework is developed for tracking constant reference signals in a context of finite-dimensional, exponentially stable, single-input, single-output linear systems with positive steady-state gain and subject to locally Lipschitz, monotone input and output nonlinearities of a general nature: the input nonlinearity is required to satisfy an asymptotic growth condition (of sufficient generality to accommodate nonlinearities ranging from saturation to exponential growth) and the output nonlinearity is required to satisfy a sector constraint in those cases wherein the input nonlinearity is unbounded.  相似文献   

9.
A dynamics inversion compensation scheme is designed for control of nonlinear discrete‐time systems with input backlash. This paper extends the dynamic inversion technique to discrete‐time systems by using a filtered prediction, and shows how to use a neural network (NN) for inverting the backlash nonlinearity in the feedforward path. The technique provides a general procedure for using NN to determine the dynamics preinverse of an invertible discrete time dynamical system. A discrete‐time tuning algorithm is given for the NN weights so that the backlash compensation scheme guarantees bounded tracking and backlash errors, and also bounded parameter estimates. A rigorous proof of stability and performance is given and a simulation example verifies performance. Unlike standard discrete‐time adaptive control techniques, no certainty equivalence (CE) or linear‐in‐the‐parameters (LIP) assumptions are needed.  相似文献   

10.
This paper presents an estimation and compensation of state‐dependent nonlinearity for a modified repetitive control system. It is based on the equivalent‐input‐disturbance (EID) approach. The nonlinearity is estimated by an EID estimator and compensated by incorporation of the estimate into the repetitive control input. A two‐dimensional model of the EID‐based modified repetitive control system is established that enables the preferential adjustment of control and learning actions by means of 2 tuning parameters. The singular‐value‐decomposition technique and Lyapunov stability theory are used to derive a linear‐matrix‐inequality–based asymptotic stability condition. Exploiting the stability condition and an overall performance evaluation index, a design algorithm is developed. Simulation results for the tracking control of a chuck‐workpiece system show that the method not only compensates state‐dependent nonlinearity but also improves the tracking performance for the periodic reference input, thereby demonstrating the validity of the method.  相似文献   

11.
This paper presents a novel switching controller incorporated with backlash and friction compensations, which is utilized to achieve speed synchronization among multi‐motor and load position tracking. The proposed controller consists of two parts: synchronization and tracking control in contact mode and robust control in backlash mode, where a function characterizing whether backlash occurs is used for switching between two modes. Using the proposed switching controller, several control objectives are achieved. Firstly, the coupling problem of speed synchronization and load tracking in contact mode is addressed by introducing a switching plane. Secondly, based on the switching plane, an improved prescribed performance function is introduced to attain load tracking with prescribed performances, and L performance of speed synchronization is guaranteed by initialization method, maintaining the transient performance of synchronization behavior. Thirdly, the lumped uncertain nonlinearity including friction and other uncertain functions is compensated by Chebyshev neural network in contact mode. Furthermore, a robust control is adopted in backlash mode to make system traverse backlash at an exponential rate and simultaneously eliminate low‐speed crawling phenomenon of LuGre friction. Finally, comparative simulations on four‐motor driving servo system are provided to verify the effectiveness and reliability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a nonlinear adaptive control for output tracking of multi‐input multi‐output nonlinear nonminimum phase system with input nonlinearity. The parameters of the input nonlinearity are assumed to be unknown. This problem is challenging, not only because of the unstable internal dynamics of nonminimum phase system, but also the existence of the unknown input nonlinearity. The partially linearized model of the original system is obtained through input/output linearization, and a states tracking model is constructed based on the computed ideal internal dynamics. A nonlinear adaptive controller, which can guarantee the bounded of output tracking error in the existence of unknown input nonlinearity, is proposed. Finally, a numerical simulation on vertical takeoff and landing aircraft is given to show the effectiveness of the proposed control methods.  相似文献   

13.
An adaptive compensation control scheme is proposed by using backstepping techniques for a class of uncertain nonlinear systems preceded by m hysteretic actuators, which exhibit unknown backlash nonlinearity and possibly experience unknown failures. An estimated smooth inverse of the actuator backlash is utilized in the controller design to compensate for the effects of the backlash and actuator failures. It is shown that the designed controllers can ensure all signals of closed‐loop system bounded for any failure pattern of hysteretic actuators and tracking performance is also maintained. Simulation studies confirm the effectiveness of the proposed controller, especially the improvement of system performances. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes a novel adaptive sliding mode control (ASMC) for a class of polynomial systems comprising uncertain terms and input nonlinearities. In this approach, a new polynomial sliding surface is proposed and designed based on the sum‐of‐squares (SOS) decomposition. In the proposed method, an adaptive control law is derived such that the finite‐time reachability of the state trajectories in the presence of input nonlinearity and uncertainties is guaranteed. To do this, it is assumed that the uncertain terms are bounded and the input nonlinearities belong to sectors with positive slope parameters. However, the bound of the uncertain terms is unknown and adaptation law is proposed to effectively estimate the uncertainty bounds. Furthermore, based on a novel polynomial Lyapunov function, the finite‐time convergence of the sliding surface to a pre‐chosen small neighborhood of the origin is guaranteed. To eliminate the time derivatives of the polynomial terms in the stability analysis conditions, the SOS variables of the Lyapunov matrix are optimally selected. In order to show the merits and the robust performance of the proposed controller, chaotic Chen system is provided. Numerical simulation results demonstrate chattering reduction in the proposed approach and the high accuracy in estimating the unknown parameters.  相似文献   

15.
In this paper, we consider the problem of global set‐point tracking control for a class of nonlinear systems with dynamic uncertainty. Unlike the existing works, the investigated system is with the integral input‐to‐state stable (iISS) inverse dynamics and more general uncertain nonlinearities. By using a recursive design method, a partial‐state feedback controller is designed. The tuning function technique is applied in this procedure to avoid the overparametrization. It is shown that the developed control procedure could guarantee that the tracking error is driven to the origin and the other signals are bounded. In addition, it can also reduce to a linear or even a classical PI control law under some sufficient conditions. Simulation results are illustrated to show the effectiveness of the proposed algorithm. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
A two-stage parameter identification method is developed for Hammerstein systems containing backlash nonlinearities bordered by parametric arbitrary-shape lines. In the first stage, a persistently exciting input is designed so that the linear subsystem can be made decoupled from the nonlinear element. Therefore, linear subsystem identification is coped with using a least squares estimator enjoying consistency, due to input persistent excitation. Then, the backlash parameters are estimated using appropriate periodic exciting signals and consistent parameter estimators.  相似文献   

17.
This paper proposes a robust adaptive dynamic surface control (DSC) scheme for a class of time‐varying delay systems with backlash‐like hysteresis input. The main features of the proposed DSC method are that 1) by using a transformation function, the prescribed transient performance of the tracking error can be guaranteed; 2) by estimating the norm of the unknown weighted vector of the neural network, the computational burden can be greatly reduced; 3) by using the DSC method, the explosion of complexity problem is eliminated. It is proved that the proposed scheme guarantees all the closed‐loop signals being uniformly ultimately bounded. The simulation results show the validity of the proposed control scheme.  相似文献   

18.
Chen  Yanxian 《Applied Intelligence》2022,52(9):10135-10147

In the study, a tracking control method is addressed when switched interconnected systems are subjected to backlash nonlinearities. For one inequality with multiple smooth inverse models, it is not clear how to establish the boundedness of system states. In order to remove above restriction, a novel interconnected smooth inverse compensator is presented. Then, combined the proposed inverse model with common Lyapunov method, a new adaptive neural decentralized controller is presented to assure stability of system. Eventually, availability of developed control approach can be proven by the examples.

  相似文献   

19.
Inverse schemes are constructed for multisegment piecewise-linear nonlinearities. Adaptive laws are proposed to update the inverse to cancel the effect of the unknown characteristic of such a nonlinearity which appears at the input of a linear part. Two adaptive control schemes using an adaptive inverse and a linear controller structure are developed: one for the linear part known and the other for the linear part unknown. Different adaptive designs are given based on different a priori nonlinearity knowledge necessary for the construction of an adaptive inverse. The adaptive inverse controllers ensure closed-loop signal boundedness and lead to significant improvements of system tracking performance  相似文献   

20.
In this paper, an adaptive decentralized tracking control scheme is designed for large‐scale nonlinear systems with input quantization, actuator faults, and external disturbance. The nonlinearities, time‐varying actuator faults, and disturbance are assumed to exist unknown upper and lower bounds. Then, an adaptive decentralized fault‐tolerant tracking control method is designed without using backstepping technique and neural networks. In the proposed control scheme, adaptive mechanisms are used to compensate the effects of unknown nonlinearities, input quantization, actuator faults, and disturbance. The designed adaptive control strategy can guarantee that all the signals of each subsystem are bounded and the tracking errors of all subsystems converge asymptotically to zero. Finally, simulation results are provided to illustrate the effectiveness of the designed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号