首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
天津大港焦化蜡油预处理研究   总被引:2,自引:0,他引:2  
通过反应时间、反应温度、剂油质量比等条件对焦化蜡油中碱性氮化物脱除率及油品收率进行研究,结合正交试验确定了最佳反应条件。结果表明,反应温度59℃,剂油质量比0.021,搅拌速度300 r/min,反应时间15 min,沉降时间15 min时,油品收率为94.92%,碱性氮化物脱除率为85.42%。  相似文献   

2.
用工业萘制备高纯萘产品的研究   总被引:1,自引:0,他引:1  
高纯萘产品是许多高科技化学品的起始原料,可以通过工业萘脱硫精制得到。现有工业萘产品的主要杂质为硫化物苯并噻吩,用普通分离方法难以脱除干净。以过氧化氢为氧化剂,甲酸为催化剂,用氧化法对工业萘进行了脱硫研究,考察了过氧化氢配比、甲酸配比、反应温度、反应时间等因素对脱硫率的影响。结果表明,甲酸配比增加,脱硫率提高;随过氧化氢配比增加,脱硫率先上升后下降,存在一个最佳值范围;适当提高反应温度,可降低油相的粘度,有利于油水两相充分混合和提高反应效率,最佳反应温度为89~92℃;以纯度97.06%以上的工业萘为原料,在n(H)n(F)=3.65,n(H)/n(S)=8.49、反应温度89℃、反应时间60min的条件下,脱硫率可达到97.90%,再经过精馏精制之后,所得产品中含萘质量分数超过99.90%,显著高于现有精萘产品质量。  相似文献   

3.
焦化蜡油碱性氮化物的脱除   总被引:1,自引:1,他引:0  
采用一种复合脱氮剂脱除碱性氮化物,去除焦化蜡油(CGO)中的碱性氮化物。考察了反应温度、反 应时间、剂油质量比等条件对轻质油收率和碱性氮化物脱除率的影响。实验结果表明,反应温度为72 ℃,剂油质量 比为0.025,搅拌速度为300r/min,反应时间为30min,沉降时间为15min,轻质油收率为94.23%,碱性氮化物脱除 率为85.62%。  相似文献   

4.
以兰炼催化汽油为原料,采用小型固定流化床为芳构化反应装置,考察了反应条件对芳构化产物产率、转化率、MON和RON和液体产品组成的影响规律.实验结果表明,随着反应温度的升高,干气、液化气和焦炭产率呈上升趋势,而汽油和柴油产率呈下降趋势;随着空速的增加,干气、液化气和焦炭产率基本上呈缓慢下升的趋势,而汽油和柴油产率基本上呈缓慢上升的趋势;随着剂油比的提高,干气、液化气和焦炭产率逐渐增大,汽油和柴油产率逐渐减小;随着水油比的加大,汽油、柴油和焦炭产率和产品的马达法辛烷值(MON)和研究法辛烷值(RON)逐渐减少,干气和液化气产率变化不大.确定了兰炼FCC汽油的实验室的最佳操作条件为反应温度430~450℃、空速20~30h1、剂油比6~9,水油比为0.05左右.  相似文献   

5.
采用抚顺石化乙烯装置裂解原料(石脑油和加氢尾油)的设计指标和生产实测数据作为主要分析依据。首先测定乙烯裂解原料的组分、物性参数及裂解气组成,从而对比两种原料对应的裂解温度、稀释比、停留时间、清焦周期、油品单价及裂解深度等参数,同时考查裂解原料性质对其产物收率的影响,最后比较实际生产数据与设计参数的差异,并提出具体优化措施。结果表明,石脑油和加氢尾油原料及其裂解产物的物性测试指标均在设计允许范围内,但两种原料裂解气的收率均高于设计值,且石脑油原料裂解的乙烯、双烯、甲烷和氢气的总收率比加氢尾油裂解产物的收率高出4.57%,其中乙烯和双烯收率分别高出0.44%及0.63%,而碳四、碳五、碳六至碳八、碳九及燃料油等重组分产物的收率与加氢尾油裂解产物的收率相比降低5.18%。  相似文献   

6.
以樟脑粉为原料合成了消旋樟脑磺酸;采用l-苯甘氨酸为拆分剂,经拆分、纯化分离得到了手性樟脑磺酸。合成消旋樟脑磺酸的适宜工艺条件为:反应时间25 h,浓硫酸的滴加速度0.5~1.0 mL/min,反应温度10℃,消旋樟脑磺酸的收率85.6%,熔点195~201℃。拆分的适宜工艺条件为:物料比n(dl-樟脑磺酸)∶n(l-苯甘氨酸)=1∶0.95,d-樟脑磺酸拆分收率64%,熔点194~196℃,[α]2D0=+23°(C=5,H2O);l-樟脑磺酸拆分收率90.8%,熔点197~198℃,[α]2D0=-22.5°(C=5,H2O)。样品经熔点、旋光率、红外光谱等检测方法,证明与目标产物一致。  相似文献   

7.
大庆渣油催化裂解反应规律研究   总被引:6,自引:0,他引:6  
在小型固定流化床反应器装置上详细考察了大庆常压渣油催化裂解反应产物低碳烯烃随反应温度、剂油比和水油比变化等反应条件的变化规律。实验结果表明反应温度、剂油比、水油比均对目的产物低碳烯烃的产率有显影响,随反应温度、剂油比和水油比的增加,烯烃产率均存在最大值。在优化操作条件下,丙烯质量产率超过20%,总低碳烯烃质量产率超过44%,并且丙烯产率大于乙烯产率。  相似文献   

8.
页岩油脱氮新方法的研究   总被引:1,自引:0,他引:1  
以酸性试剂为萃取剂,碱为反萃取剂,对抚顺页岩原油中氮化物尤其是碱性氮化物的脱除进行了研究.结果表明,增大荆油质量比、提高反应温度、延长反应时间及沉降时间均有利于页岩油中碱性氮化物的脱除,同时油品的质量也得到了一定程度的改善.当以酸性试剂A为萃取荆,剂油质量比为1:1,反应温度为60℃,反应时间为20 min,沉降时间为4 h时,页岩油中的碱氮脱除率可达96.04%,总氮脱除率达38.25%,页岩油的收率为97.18%.  相似文献   

9.
采用5%Pd/C作为转移氢催化剂,原料二氢枯茗酸为氢给予剂,以工业双戊烯作为氢接受剂和溶剂。合成了对异丙基苯甲酸.考察了催化剂用量、反应时间和反应温度对反应的影响,确定了合成对异丙基苯甲酸的最佳反应条件:5%Pd/C用量为原料的5.3%(质量比)、反应时间20min、在回流温度下,对异丙基苯甲酸的收率可达90%.催化剂重复使用5次后活性是原来的89%.  相似文献   

10.
渣油加氢转化过程中沥青质的结构变化   总被引:1,自引:0,他引:1  
通过1H -NMR、元素分析和平均相对分子质量等方法研究了不同沥青质质量分数的渣油在高压釜内加氢反应前后沥青质结构和组成的变化。结果表明, 加氢反应后沥青质的平均相对分子质量和H/C 原子比减小, 芳碳分率增大, 芳香环系周边氢取代率σ及芳香环系缩合度参数H AU/ CA 减小, w(HA)增加, 而w(Hα)、w(Hβ)、w (H γ)减少, 沥青质的取代芳碳分率减少, 质子芳碳分率增加, 表明加氢反应后所得沥青质的缩合度增大, 沥青质发生了明显的脱烷基侧链反应。加氢后沥青质的含硫质量分数降低, 含氮质量分数增加。随原料中沥青质质量分数的增加, 加氢后沥青质的环烷环数和芳香环数均逐渐增加, 尤其是芳香环数, 甚至会大于原生沥青质。渣油加氢过程中沥青质主要是以单元薄片为基本单元参与反应的, 沥青质的加氢反应, 既有自由基反应, 又有正碳离子反应。  相似文献   

11.
溴化四乙铵催化合成碳酸乙烯酯反应研究   总被引:1,自引:0,他引:1  
为探索一种具有工业应用价值的碳酸乙烯酯生产工艺(EC),采用环氧乙烷(EO)与二氧化碳为原料,以高催化活性、易于获取且价格低廉的溴化四乙铵(TEAB)为催化剂,采用单变量考察以及正交实验的方法,探索了反应温度、反应压力、催化剂质量分数、反应时间以及初始进料EC与EO的比例对EC收率的影响,以求高收率地得到EC产品.研究表明,在5.5MPa,180℃,催化剂TEAB与EO的质量百分比为0.3%,反应时间为120min,初始进料配比EC/EO为1.0的反应条件下,EC收率可以达到98%.实验验证了该催化剂的活性在11次循环后仍保持稳定.  相似文献   

12.
采用浸渍法制备了一系列负载型催化剂,用于催化乙酸(AA)与异丁酸(IBA)酮化反应合成甲基异丙基酮(MIPK)。通过催化剂性能评价,筛选出较好的催化剂CeO2-TiO2/SiO2。用SEM、XRD、BET等方法对CeO2-TiO2/SiO2进行了表征。分别考察了不同反应温度与时间、原料组成、及进料空速等因素对反应活性和选择性的影响。结果表明:CeO2-TiO2/SiO2催化剂可有效催化AA与IBA催化合成MIPK,并且在450℃获得MIPK最高收率,450℃以后催化活性呈下降趋势。控制原料液相进料空速LHSV为0.5h-1,IBA与AA进料物质的量比为1∶1.7,水占原料的质量分数为10%,该催化剂于450℃连续反应30d后,异丁酸转化率由第1d的96.4%下降为82.6%,MIPK的收率由第1d的79.2%下降为70.5%。  相似文献   

13.
采用2步法催化氧化苯甲醛合成苯甲酸,氧化剂为过氧化氢,催化剂为钨酸钠.其中过氧化氢分两次加入,第1次加入总量40%的过氧化氢,第2次加入剩余的过氧化氢.实验结果表明,2步法加入过氧化氢得到的苯甲酸收率为56.22%,明显高于1步法的苯甲酸的收率.对首次加入过氧化氢时的物料比进行了正交试验,最佳合成条件为n(H2O2)/n(Na2WO4.2H2O)n(NaHSO4)n(C6H5CHO)=100 1.2 1 250.同时考察了2步法反应的回流时间对收率的影响,结果表明第1步的反应时间3 h,第2步反应的时间5 h的反应条件最优.  相似文献   

14.
稠油催化改质降黏实验研究   总被引:1,自引:0,他引:1  
稠油催化改质是在350~400℃的稠油中加入催化剂,使其分子中的C-C键发生断裂,大分子变成小分子,稠油平均分子量降低,胶质和沥青质总含量减少,以达到大幅度降低稠油黏度、改善稠油流动性和实现稠油管道常温输送的目的。通过控制反应条件,可以抑制缩合结焦副反应。选择油酸铁作为催化剂,在较优操作条件下(油酸铁质量分数0.1%,反应温度370℃,反应时间30 min),对稠油进行催化改质降黏。改质稠油黏度由原始的21 040 mPa·s下降到336 mPa·s,降黏率为98.7%,胶质和沥青质分别减少了11.3%和20%,饱和烃和沥青质分别增加了约16.1%和15.2%。凝点从20℃下降到-5℃,平均分子量从620降至450,有利于常温管道输送。  相似文献   

15.
考察了新型碱性阻焦剂对辽河减压渣油热反应性能的影响。实验采用FYX05A型高压釜作为间歇式反应嚣,考察了辽河减压渣油在435~480℃温度范围内的热反应性能。实验中通过产品收率随温度的变化,以及阻焦剂加入后产品分布的变化情况,确定阻焦剂的质量分数对原料热反应性能的影响。新型碱性阻焦剂加入后,辽河减压渣油的热反应性能明显改变,提高了轻油收率,焦炭、气体收率都有所下降。实验结果表明,在温度为480℃, 阻焦剂的质量分数为3%时,焦炭和气体产率最低,液体产率最高。并利用胶体分散理论对实验结果进行了简要分析。  相似文献   

16.
以钼酸钠、偏钒酸钠、磷酸二氢钠为原料合成H5PMo10V2O40.通过IR进行表征,确认所合成的化合物中多酸阴离子仍保留Keggin结构.将新合成的H5PMo10V2O40杂多酸应用到苯甲醛氧化合成苯甲酸反应中,考察了催化剂用量、氧化剂30%H2O2的用量、反应时间、反应温度等对苯甲酸收率的影响.最佳工艺条件为催化剂苯甲醛=1.9×10-31(摩尔比),n(H2O2)n(苯甲醛)=6.5 1,反应时间2.5 h,反应温度80℃.苯甲酸的收率达到85%以上.  相似文献   

17.
采用溶胶-凝胶法制备H4SiW6Mo6O40/SiO2为催化剂,以乙酰乙酸乙酯、苯甲醛和尿素为原料,无水乙醇为溶剂一锅法合成4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮.研究结果表明:催化剂用量、反应温度、反应时间和反应物的物质的量比是影响4-苯基-6-甲基-5-乙氧羰基-3,4-二氢嘧啶-2(H)-酮合成收率的重要因素.当n(苯甲醛)∶n(乙酰乙酸乙酯)∶n(尿素)为1∶1.2∶1.5,反应温度为90℃,催化剂的用量占反应物料总质量的2.5%,反应时间为90min时,产品收率可达72.3%.通过熔点,IR,1HNMR和MS等测试手段对合成的3,4-二氢嘧啶酮化合物进行了表征。  相似文献   

18.
探讨以30%H2O2为氧源,H3PW12O40/ZrO2-WO3为催化剂对氧化环己酮合成己二酸反应的催化活性,较系统地研究了ZrO2-WO3负载磷钨酸的用量、反应温度、H2O2用量、反应时间等因素对产物收率的影响。实验表明:在n(环己酮)∶n(H2O2)∶n(H3PW12O40/ZrO2-WO3)=100∶294∶0.1,反应温度为110℃,反应时间3 h的最佳条件下,己二酸的收率可达44.7%。  相似文献   

19.
以硝酸处理过的椰壳活性炭做载体,锡、铜等金属氯化物为活性组分,采用等体积溶液浸渍法制备了用于乙炔氢氯化反应的无汞Sn-Cu/C催化剂和不同助剂添加量的Sn-Cu-M/C催化剂,并用X射线衍射(XRD)和物理化学吸附仪对其进行了表征。采用常压固定床反应器考察了催化剂的优化反应工艺条件。结果表明.采用酸处理后的活性炭的比表面积与孔径都有明显增加,且催化剂的金属活性组分在载体表面分散均匀。优化反应工艺条件为:反应温度170℃,体积空速30 h-1,原料配比V (HCl)/V (C2 H2)=1.05。在该条件下考察催化剂的催化反应性能,结果表明,S n-C u/C催化剂的初活性可以达到98%以上,选择性达99%。在添加不同量的助剂组分后,在同样反应条件下,催化剂的活性及稳定性均有较大提高,在反应近20 h后,催化剂乙炔转化率达到98%,选择性达到99%。  相似文献   

20.
以NaHSO4·H2O、正硅酸乙酯和异丙醇为原料,经溶胶—凝胶法制备固体酸催化剂(NaHSO4·SiO2),进行了利用此催化剂催化油酸与甲醇的酯化反应制备生物柴油的实验,研究了催化剂焙烧温度、NaHSO4负载量、反应时间、催化剂质量分数、甲醇与油酸物质的量比等对油酸转化率的影响。实验结果表明:固体酸催化剂NaHSO4·SiO2在油酸与甲醇的酯化反应中具有很高的催化活性,当催化剂焙烧温度为200℃、NaHSO4负载量为15%、n(甲醇)∶n(油酸)=10∶1、催化剂质量占油酸质量的10%、反应时间5h时,酯化反应转化率可达95.19%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号