首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Soft robots adapt passively to complex environments due to their inherent compliance, allowing them to interact safely with fragile or irregular objects and traverse uneven terrain. The vast tunability and ubiquity of textiles has enabled new soft robotic capabilities, especially in the field of wearable robots, but existing textile processing techniques (e.g., cut-and-sew, thermal bonding) are limited in terms of rapid, additive, accessible, and waste-free manufacturing. While 3D knitting has the potential to address these limitations, an incomplete understanding of the impact of structure and material on knit-scale mechanical properties and macro-scale device performance has precluded the widespread adoption of knitted robots. In this work, the roles of knit structure and yarn material properties on textile mechanics spanning three regimes–unfolding, geometric rearrangement, and yarn stretching–are elucidated and shown to be tailorable across unique knit architectures and yarn materials. Based on this understanding, 3D knit soft actuators for extension, contraction, and bending are constructed. Combining these actuation primitives enables the monolithic fabrication of entire soft grippers and robots in a single-step additive manufacturing procedure suitable for a variety of applications. This approach represents a first step in seamlessly “printing” conformal, low-cost, customizable textile-based soft robots on-demand.  相似文献   

2.
Textiles with a freedom of form factor, unlimited scalability, and high programmability provide an ideal platform for constructing wearable optoelectronic systems. The emerging wearable technologies, like artificial intelligence and Internet of Things, have driven the development of textile optoelectronics from simple functional blocks to sophisticated logic systems, offering a seamless, breathable, and programmable on-body platform to synergistically sense, analyze, store, and feedback information in response to complex commands. In the past few years, the creation of such smart textile optoelectronics-based logic systems is boosted by nanomaterial science and manufacturing integration technologies and has revolutionized human–machine interaction paradigms in numerous emerging fields. Herein, in this review, the recent progress of smart textile optoelectronics for human-interfaced logic systems is timely summarized. This review begins with a concise discussion about the wearability evaluation and integration consideration of textile optoelectronic devices. Then, important breakthroughs in human-interfaced logic systems based on smart textile optoelectronics are demonstrated by highlighting their representative device, working principle, and application scenarios. Finally, the existing challenges and potential directions in the field of textile optoelectronics-integrated logic systems are analyzed.  相似文献   

3.
The challenges of textiles that can generate and store energy simultaneously for wearable devices are to fabricate yarns that generate electrical energy when stretched, yarns that store this electrical energy, and textile geometries that facilitate these functions. To address these challenges, this research incorporates highly stretchable electrochemical yarn harvesters, where available mechanical strains are large and electrochemical energy storing yarns are achieved by weaving. The solid‐state yarn harvester provides a peak power of 5.3 W kg?1 for carbon nanotubes. The solid‐state yarn supercapacitor provides stable performance when dynamically deformed by bending and stretching, for example. A textile configuration that consists of harvesters, supercapacitors, and a Schottky diode is produced and stores as much electrical energy as is needed by a serial or parallel connection of the harvesters or supercapacitors. This textile can be applied as a power source for health care devices or other wearable devices and be self‐powered sensors for detecting human motion.  相似文献   

4.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   

5.
Smart fabrics and interactive textiles have attracted great interest as a newly emergent material because of their multifunctional capabilities. Herein, a highly robust wireless flexible strain sensor on the basis of commercial textile by the integration of functional hybrid carbon nanomaterials and piezoresistive material is fabricated. Specifically, a solution‐processable spray‐assisted coating approach that enables the creation of a uniform coating over a large area of fabrics is employed. The textile‐based strain sensor exhibits a highly stable and immediate response over a wide range of bending curvatures and structural properties of ZnO nanowires because of their different deflection behaviors. The wearing performance with attaching on commercial fabrics is further demonstrated. The as‐prepared sensor responds well to diverse body motions with accurate detection of strain magnitude and even extends its viability in wireless remote sensing by connecting to a wireless transmitter. The novel approach for the modification of textiles with functional nanomaterials may provide a feasible approach for the production of textile‐based electronics without employing any sophisticated fabrication processes, and it further exploits the diverse functionalities by utilizing various sensing components.  相似文献   

6.
Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor electrical conductivity and higher power consumption. Here, highly conductive, ultraflexible, and machine washable graphene‐based wearable e‐textiles are reported. A simple and scalable pad?dry?cure method with subsequent roller compression and a fine encapsulation of graphene flakes is used. The graphene‐based wearable e‐textiles thus produced provide lowest sheet resistance (≈11.9 Ω sq?1) ever reported on graphene e‐textiles, and highly conductive even after 10 home laundry washing cycles. Moreover, it exhibits extremely high flexibility, bendability, and compressibility as it shows repeatable response in both forward and backward directions before and after home laundry washing cycles. The scalability and multifunctional applications of such highly conductive graphene‐based wearable e‐textiles are demonstrated as ultraflexible supercapacitor and skin‐mounted strain sensors.  相似文献   

7.
Flexible supercapacitors have potential for wearable energy storage due to their high energy/power densities and long operating lifetimes. High electrochemical performance with robust mechanical properties is highly desired for flexible supercapacitor electrodes. Usually, the mechanical properties are improved by choosing high flexible textile substrates but at the much expense of electrochemical performance due to the nonideal contact between conductive materials and textile substrates. Herein, the authors present an efficient, scalable, and general strategy for the simultaneous fabrication of high‐performance textile electrodes and yarn electrodes. It is interesting to find that the conformal reduced graphene oxide (RGO) layer is uniformly and successively painted on the surface of SnCl2 modified polyester fibers (M‐PEF) via a repeated “dyeing and drying” strategy. The large‐area textile electrodes and ultralong yarn electrodes are fabricated by using RGO/M‐PEF as substrate with subsequent deposition of polypyrrole. This work provides new opportunities for developing high flexible textile electrodes and yarn electrodes with further increased electrochemical performance and scalable production.  相似文献   

8.
Design and Characterization of Purely Textile Patch Antennas   总被引:1,自引:0,他引:1  
In this paper, we present four purely textile patch antennas for Bluetooth applications in wearable computing using the frequency range around 2.4 GHz. The textile materials and the planar antenna shape provide a smooth integration into clothing while preserving the typical properties of textiles. The four antennas differ in the deployed materials and in the antenna polarization, but all of them feature a microstrip line as antenna feed. We have developed a manufacturing process that guarantees unaffected electrical behavior of the individual materials when composed to an antenna. Thus, the conductive textiles possess a sheet resistance of less than 1Omega/squarein order to keep losses at a minimum. The process also satisfies our requirements in terms of accuracy meeting the Bluetooth specifications. Our investigations not only characterize the performance of the antennas in planar shape, but also under defined bending conditions that resemble those of a worn garment. We show that the antennas can withstand clothing bends down to a radius of 37.5 mm without violating specifications  相似文献   

9.
Although multifunctional, flexible, and wearable textiles with integrated smart electronics have attracted tremendous attention in recent years, it is still an issue to balance new functionalities with the inherent performances of the textile substrates. 2D early transition metal carbides/nitrides (MXenes) are considered as ideal nanosheets for fabricating multifunctional and flexible textiles on the basis of their superb intrinsic electrical conductivity, tunable surface chemistry, and layered structure. Herein, highly conductive and hydrophobic textiles with exceptional electromagnetic interference (EMI) shielding efficiency and excellent Joule heating performance are fabricated by depositing in situ polymerized polypyrrole (PPy) modified MXene sheets onto poly(ethylene terephthalate) textiles followed by a silicone coating. The resultant multifunctional textile exhibits high electrical conductivity of ≈1000 S m?1 in conjunction with an exceptional EMI shielding efficiency of ≈90 dB at a thickness of 1.3 mm. The thin silicone coating renders the hydrophilic PPy/MXene‐decorated textile hydrophobic, leading to an excellent water‐resistant feature while retaining a satisfactory air permeability of the textile. Interestingly, the multifunctional textile also exhibits an excellent moderate voltage‐driven Joule heating performance. Thus, the deposition of PPy‐modified MXene followed by silicone coating creates a multifunctional textile that holds great promise for wearable intelligent garments, EMI shielding, and personal heating applications.  相似文献   

10.
E‐textile technology has earned a great deal of interest in many fields; however, existing wearable network protocols are not optimized for use with conductive yarn. In this paper, some of the basic properties of conductive textiles and requirements on wearable personal area networks (PANs) are reviewed. Then, we present a wearable personal network (WPN), which is a four‐layered wearable PAN using bus topology. We have designed the WPN to be a lightweight protocol to work with a variety of microcontrollers. The profile layer is provided to make the application development process easy. The data link layer exchanges frames in a master‐slave manner in either the reliable or best‐effort mode. The lower part of the data link layer and the physical layer of WPN are made of a fabric serial‐bus interface which is capable of measuring bus signal properties and adapting to medium variation. After a formal verification of operation and performances of WPN, we implemented WPN communication modules (WCMs) on small flexible printed circuit boards. In order to demonstrate the behavior of our WPN on a textile, we designed a WPN tutorial shirt prototype using implemented WCMs and conductive yarn.  相似文献   

11.
In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.   相似文献   

12.
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq?1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.  相似文献   

13.
Multifunctional electronic textiles (e‐textiles) incorporating miniaturized electronic devices will pave the way toward a new generation of wearable devices and human–machine interfaces. Unfortunately, the development of e‐textiles is subject to critical challenges, such as battery dependence, breathability, satisfactory washability, and compatibility with mass production techniques. This work describes a simple and cost‐effective method to transform conventional garments and textiles into waterproof, breathable, and antibacterial e‐textiles for self‐powered human–machine interfacing. Combining embroidery with the spray‐based deposition of fluoroalkylated organosilanes and highly networked nanoflakes, omniphobic triboelectric nanogenerators (RF‐TENGs) can be incorporated into any fiber‐based textile to power wearable devices using energy harvested from human motion. RF‐TENGs are thin, flexible, breathable (air permeability 90.5 mm s?1), inexpensive to fabricate (<0.04$ cm?2), and capable of producing a high power density (600 µW cm?2). E‐textiles based on RF‐TENGs repel water, stains, and bacterial growth, and show excellent stability under mechanical deformations and remarkable washing durability under standard machine‐washing tests. Moreover, e‐textiles based on RF‐TENGs are compatible with large‐scale production processes and exhibit high sensitivity to touch, enabling the cost‐effective manufacturing of wearable human–machine interfaces.  相似文献   

14.
In this work, a novel technique of inkjet printing e‐textiles with particle free reactive silver inks on knit structures is developed. The inkjet‐printed e‐textiles are highly conductive, with a sheet resistance of 0.09 Ω sq‐1, by means of controlling the number of print passes, annealing process, and textile structures. It is notable that the inkjet process allows textiles to maintain its inherent properties, including stretchability, flexibility, breathability, and fabric hand after printing process. This is achieved by formation of ultrathin silver layers surrounding individual fibers. The silver layers coated on fibers range from 250 nm to 2.5 µm, maintaining the size of interstices and flexibility of fibers. The annealing process, structure of fibers, and printed layers significantly influence the electrical conductivity of the patterned structures on textiles. Outstanding electrical conductivity and durability are demonstrated by optimizing print passes, controlling textile structures, and incorporating an in situ annealing process. The electrical resistance dependence on the strain rate of the textiles is examined, showing the ability to maintain electrical conductivity to retain light‐emitting diode use, stable more than 500 consecutive strain cycles. Most importantly, inkjet‐printed e‐textiles maintain their characteristic washability, breathability, and fabric hands for applications in wearable technology.  相似文献   

15.
Electrospinning used to fabricate eco-friendly, transparent, human hair-based nanofibers (NFs) using natural resources such as keratin (which is found in hair, wool, feather, nails, and horns). These NF-based textiles are very useful in making transparent, wearable electronics, as they possess unique optical properties in the visible light regions, such as transparency exceeding 85%. The resulting environmentally friendly, hair-based NFs were investigated through various methods. In order to study transparent property of optically transparent NFs for applying transparent wearable devices, we fabricated transparent flexible consolidated sandwich structures embedded in NF textiles with polymer light-emitting diodes (PLEDs). The devices exhibit the fabrication process and characterization of consolidated textiles and PLEDs by using various color emission type of polymer. Also, we investigated a comparison between PLEDs without textiles and consolidated PLEDs with textile. When used white, red, and yellow polymer in this consolidated textile/LEDs/textile structures, the performances of device was obtained from a spectrally white, red, and yellow color light with a maximum luminance of 2781, 2430, and 6305 cd/m2 at 13, 11, and 10 V, respectively. The LED characteristics of the consolidated PLEDs with textile maintained similar device efficiencies of PLEDs without textiles.  相似文献   

16.
Textiles and apparel archaeology is an indispensable part of history and archaeology. As most unearthed textile relics are silk, soft and multi-layered in nature, their frangibility poses enormous difficulties in their transportation, storage and exhibition. Traditional methods may not be suitable for accurately monitoring their condition under various external situations, due to the particularity of the textile relics. Herein, a smart, flexible, fabric-based monitoring system, which integrates sensing fibers, textile technology, and traditional silkscreen conservation, is developed for the preservation and conservation of textile relics. The proposed integrated electrochemical fabric bears a high level of flexibility and diversification in structure, and furthermore can act as a protective cover to monitor external environmental impact factors such as pH value, strain, humidity, temperature, and ultraviolet light. The newly developed system can act as a daily monitoring solution to achieve real-time and prolonged preventative control from various mechanisms of degradation, so as to ultimately support and uphold the conversation and preservation of textile relics.  相似文献   

17.
Benefiting from inherent lightweight, flexibility, and good adaptability to human body, functional textiles are attracting tremendous attention to cope with wearable issues in sustainable applications around human beings. In this feature article, a comprehensive and thoughtful review is proposed regarding research activities of functional textiles with smart properties. Specifically, a brief exposition of highlighting the significance and rising demands of novel textiles throughout the human society is begun. Next, a systematic review is provided about the fabrication of functional textiles from 1D spinning, 2D modification, and 3D construction, their diverse functionality as well as sustainable applications, showing a clear picture of evolved textiles to the readers. How to engineer the compositions, structures, and properties of functional textiles is elaborated to achieve different smart properties. All these tunable, upgraded, and versatile properties make the developed textiles well suited for extensive applications ranging from environmental monitoring or freshwater access to personal protection and wearable power supply. Finally, a simple summary and critical analysis is drawn, with emphasis on the insight into remaining challenges and future directions. With worldwide efforts, advance and breakthrough in textile functionalization expounded in this review will promote the revolution of smart textiles for intelligence era.  相似文献   

18.
Smart textiles that sense, interact, and adapt to environmental stimuli have provided exciting new opportunities for a variety of applications. However, current advances have largely remained at the research stage due to the high cost, complexity of manufacturing, and uncomfortableness of environment‐sensitive materials. In contrast, natural textile materials are more attractive for smart textiles due to their merits in terms of low cost and comfortability. Here, water fog and humidity‐driven torsional and tensile actuation of thermally set twisted, coiled, plied silk fibers, and weave textiles from these silk fibers are reported. When exposed to water fog, the torsional silk fiber provides a fully reversible torsional stroke of 547° mm?1. Coiled‐and‐thermoset silk yarns provide a 70% contraction when the relative humidity is changed from 20% to 80%. Such an excellent actuation behavior originates from water absorption‐induced loss of hydrogen bonds within the silk proteins and the associated structural transformation, which are corroborated by atomistic and macroscopic characterization of silk and molecular dynamics simulations. With its large abundance, cost‐effectiveness, and comfortability for wearing, the silk muscles will open up additional possibilities in industrial applications, such as smart textiles and soft robotics.  相似文献   

19.
Smart textile for sensor is identified as a superior platform with greatly improved convenience and comfort for wearable bioelectronics. However, most reported textile-based sensors cannot fully demonstrate the inherent advantages of textiles, such as comfortability, breathability, biocompatibility, and environmental friendliness, mainly due to the intrinsic limitation of non-textile or inorganic components. Here, an all-textile, all-organic, washable, and breathable sensor with discriminable pressure, proximity, and temperature sensing function is first reported. Multiple sensing functions and outstanding washability are demonstrated. The all-textile sensor can also be seamlessly integrated into diverse types of fabrics to realize wide-range sensing of human activities and noncontact stimuli without sacrificing biocompatibility and comfortability. Additionally, by combining with the deep-learning technique, an all-textile sensing system is established to recognize object shape, contactless trajectory, and even environmental temperature. These results open a new avenue for designing low-cost, washable, comfortable, and biocompatible green textile electronics, providing a meaningful guideline in intelligent textiles.  相似文献   

20.
Rapid growth of electronic textile increases the demand for textile‐based power sources, which should have comparable lightweight, flexibility, and comfort. In this work, a self‐charging power textile interwoven by all‐yarn‐based energy‐harvesting triboelectric nanogenerators (TENG) and energy‐storing yarn‐type asymmetric supercapacitors (Y‐ASC) is reported. Common polyester yarns with conformal Ni/Cu coating are utilized as 1D current collectors in Y‐ASCs and electrodes in TENGs. The solid‐state Y‐ASC achieves high areal energy density (≈78.1 µWh cm?2), high power density (14 mW cm?2), stable cycling performance (82.7% for 5000 cycles), and excellent flexibility (1000 cycles bending for 180°). The TENG yarn can be woven into common fabrics with desired stylish designs to harvest energy from human daily motions at high output (≈60 V open‐circuit voltage and ≈3 µA short‐circuit current). The integrated self‐charging power textile is demonstrated to power an electronic watch without extra recharging by other power sources, suggesting its promising applications in electronic textiles and wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号