首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimum growth parameters of our 5 kW microwave plasma CVD reactor were obtained using CH4/H2/O2 plasma and high quality transparent films can be produced reproducibly. Among the films prepared in this system, the film of best quality has very smooth crystalline facets free of second nucleation and the full width at half maximum (FWHM) of the diamond Raman peak is 2.2 cm−1, as narrow as that of IIa natural diamond. For this study, diamond films were grown on silicon substrates with low (104–105 cm−2) and high nucleation densities (>1010 cm−2), respectively. From the same growth run, a highly 〈110〉 textured 300 μm thick white diamond film with a growth rate of 2.4 μm/h was obtained from high nucleation densities (>1010 cm−2), and a white diamond film of 370 μm in thickness with a higher growth rate of 3 μm/h was obtained from low nucleation densities (5×104–105 cm−2) too. The effect of nucleation density on film quality, growth rate, texture and morphology was studied and the mechanism was discussed. Our results suggest that under suitable growth conditions, nucleation density has little effect on film quality and low nucleation density results in higher growth rate than high nucleation density due to less intense grain growth competition.  相似文献   

2.
Highly transparent ultrananocrystalline diamond (UNCD) films were deposited on quartz substrates using microwave plasma enhanced chemical vapor deposition (MPECVD) method. Low temperature growth of high quality transparent UNCD films was achieved by without heating the substrates prior to the deposition. Additionally, a new method to grow NCD and microcrystalline diamond (MCD) films on quartz substrates has been proposed. Field emission scanning electron microscopy (FESEM) and Raman spectroscopy were used to analyze the surface and structural properties of the films. The surface morphology of UNCD film shows very smooth surface characteristics. The transparent property studies of UNCD film on quartz substrate showed 90% transmittance in the near IR region. The transparent and dielectric properties of UNCD, NCD, and MCD films on quartz substrates were compared and reported.  相似文献   

3.
Diamond films with highly smooth backside surface have been deposited by positively biasing the substrate during diamond growth in a hot-filament chemical vapor deposition (HFCVD) system. By bonding the diamond film on the glass and wet etching to remove silicon, the highly smooth diamond surface can be exposed and used directly for the fabrication of diamond devices.Silicon substrate was first treated by diamond powder of 625 nm in an ultrasonic bath. By positively biasing the substrate, electron bombardment during diamond growth increases the nucleation density from 108 ∼ 109 cm 2 to 4 × 1011 cm 2. The surface smoothness on the backside of diamond film has thus been improved significantly, inducing root-mean-square roughness of 5 nm. Owing to the extremely high surface smoothness and the high crystalline quality on the backside of diamond film and the high diamond growth rate, the backside surface of the diamond film grown under electron bombardment is particularly suitable for device fabrication.  相似文献   

4.
UV Schottky photodiode on boron-doped CVD diamond films   总被引:2,自引:0,他引:2  
We report on experimental study of photosensitivity and Q-DLTS spectra of polycrystalline CVD diamond UV photodetectors. The measured characteristics of Schottky photodiode on boron-doped diamond films are compared with those obtained for planar photoconductive structures (photoresistor type) based on undoped CVD diamond. The Schottky photodiode exhibited a sharp cut-off in photoresponse with spectral discrimination ratio (between wavelengths of 190 nm and 700 nm) as high as 5 · 105 at zero bias voltage (at zero dark current). The photodiode showed the maximum of photoresponse at wavelength < 190 nm, and a low density of trapping and recombination centers as evaluated with the Q-DLTS technique. The devices demonstrated the photoresponsivity at 190 nm from 0.03 to 0.1 A/W with quantum yield of 0.20 to 0.67 in closed circuit, while the photovoltage ≥ 1.6 V was measured in open circuit regime. Another type of UV detector, the planar photoconductive structures with interdigitizing ohmic electrodes fabricated on undoped diamond film and operated under a bias voltage, revealed a higher density of (surface) defect centers and the maximum photoresponse at  210 nm wavelength. A strong influence of UV light illumination on the Q-DLTS spectra of the planar photoconductive structures was observed. This effect can be used for development of new UV detectors and dosimeters based on the Q-DLTS signal measurements.  相似文献   

5.
Thin films of polycarbosilane (PCS) were coated on a Si (100) wafer and converted to silicon carbide (SiC) by pyrolyzing them between 800 and 1150 °C. Granular SiC films were derived between 900 and 1100 °C whereas smooth SiC films were developed at 800 and 1150 °C. Enhancement of diamond nucleation was exhibited on the Si (100) wafer with the smooth SiC layer generated at 1150 °C, and a nucleation density of 2 × 1011 cm 2 was obtained. Nucleation density reduced to 3 × 1010 cm 2 when a bias voltage of − 100 V was applied on the SiC-coated Si substrate. A uniform diamond film with random orientations was deposited to the PCS-derived SiC layer. Selective growth of diamond film on top of the SiC buffer layer was demonstrated.  相似文献   

6.
Selective seeding for growing diamond on Si substrates was performed by conventional lithography using photoresist mixed with fine diamond particles. The selectivity was improved by filtering the diamond powder-photoresist mixture and carrying out reactive ion etching of patterned substrates. As a result, a selectivity up to 2.0 × 102 or higher was achieved. The resolution was of the order of 1 μm. Field emission from diamonds prepared using this selective growth method was observed without any postgrowth treatment. The measured current vs. voltage plot of a diode showed a rectifying characteristic. Under a forward bias, a current of about 15 μA was obtained at about 570 V, with a turn-on voltage of about 480 V. The emission current was comparable with that which had been observed for Si field emitter tips.  相似文献   

7.
Diamond films were grown directly on cobalt substrates, using microwave plasma-assisted chemical vapour deposition. Although cobalt is known to inhibit the nucleation of diamond and enhancing the formation of graphite, we were able to grow relatively thick films (∼190 μm). The films were easily detached from the substrates. The poor adhesion allows the possibility of obtaining free-standing diamond films without chemical etching. Micro-Raman spectroscopy showed the 1332 cm−1 characteristic Raman peak of diamond and the 1580 cm−1, 1360 cm−1 bands of graphite, on the growth surface and backside of the films, respectively. Through scanning electron microscopy and X-ray diffraction we were able to monitor film thickness and morphology with growth evolution. The results showed the (111) preferential growth morphology for the film with higher growth rate. By energy dispersive X-ray spectroscopy it was only possible to detect cobalt in the back of the films, but not in the surface. The role of cobalt in the film growth is discussed.  相似文献   

8.
Nanocrystalline diamond films, prepared by a microwave plasma-enhanced CVD, were implanted using 110-keV nitrogen ions under fluence ranging from 1016–1017 ions cm−2. AFM, XRD, XPS and Raman spectroscopy were used to analyze the changes in surface structure and chemical state of the films before and after implantation. Results show that high-fluence nitrogen ions implanted in the nanocrystalline diamond film cause a decline in diamond crystallinity and a swelling of the crystal lattice; the cubic-shaped diamond grains in the film transform into similar roundish-shaped grains due to the sputtering effect of implanted nitrogen ions. Nitrogen-ion implantation changes the surface chemical state of the nanocrystalline diamond film. After high-fluence implantation, the surface of the film is completely covered by a layer of oxygen-containing groups. This phenomenon plays an importance role in the reduction of the adhesive friction between an Al2O3 ball and the nanocrystalline diamond film.  相似文献   

9.
《Diamond and Related Materials》2000,9(9-10):1739-1743
In this paper we report the determination of residual stresses in diamond films grown on Si(100) using a plate bending theory and a bi-metal theory combined with micro-Raman spectroscopy. Raman spectra show that with an increase in the film thickness, the characteristic diamond line shifts from higher wave numbers (>1332 cm−1) to lower (<1332 cm−1), indicating a change of compressive to tensile bi-axial stress with increase in the film thickness. A plate bending theory and a bi-metal theory are used to determine the distribution of the stress induced by the thermal mismatch. The modelled results show that the bi-axial stress decreases linearly along the film growth direction and the stress at the film/substrate interface decreases when the film becomes thicker. The difference from the Raman results is attributed to intrinsic stress.  相似文献   

10.
Stress-free diamond films have been synthesized by using microwave plasma enhanced chemical vapour deposition (MWCVD) technique. Nanocrystalline diamond/β-SiC gradient composite film system was used as an interlayer for the diamond top layers. As a result, Raman phonon line shifts (obtained from diamond top layers) corresponding to diamond are recorded very close to the stress-free value of 1332 cm− 1. This implies an extraordinarily low biaxial compressive stress state in the diamond films. The interlayer accommodates to a considerable extent, the stress that occurs due to the difference in the thermal expansion coefficient of the diamond film and the underlying substrate.  相似文献   

11.
The effects of boron (B) doping on the field emission (FE) of diamond films grown by a microwave plasma chemical vapor deposition technique were studied. Raman scattering spectroscopic analysis revealed that B-doping significantly suppressed formation of non-diamond components in the diamond film. The B-doped p-type diamond films had low resistivity, ranging from 0.07 to 20 Ω cm, and various volume fractions of non-diamond components in the diamond films. The turn-on electric field, FT, was independent of the resistivity, the film thickness, and the volume fraction of the non-diamond components. The lowest FT value of 8 V μm−1 and the highest emission current of 3×10−2 A cm−2 were obtained in the B-doped diamond films. The high efficiency of the electron emission in the B-doped diamond films was believed to be due to the increase in volume fraction of the conductive regions in the film and the high density of emission sites on the film surface.  相似文献   

12.
《Diamond and Related Materials》2000,9(9-10):1604-1607
Diamond films with different crystal structures, morphologies and surface characteristics were synthesized under various deposition parameters and annealing conditions by the microwave plasma chemical vapor deposition (MWPCVD) method using gas mixtures of CH4, CO and H2. The effects of CH4 concentrations, grain sizes, grain orientations, film thicknesses and annealing technologies in various ambient gases on planar electron emission of diamond films were studied. The results show that small-grained and (011)-oriented diamond films deposited under the condition of high CH4 concentration present the properties of high emission current and low threshold voltage; the emission current increases with decreasing the film thickness. There are largest current density and lowest threshold voltage at the film thickness of 1.5 μm. The annealing in H2 after deposition appears to be more beneficial in lowering the threshold voltage, increasing emission current and improving stability for electron emission of films than annealing in N2 or Ar. These results indicate that diamond thin films with high emission current, low threshold voltage and high stability can be obtained by selecting suitable deposition parameters of diamond films.  相似文献   

13.
X-ray diffraction analysis and micro-Raman spectroscopy measurements have been used for stress studies on HFCVD diamond films with different levels of boron doping. The boron incorporation in the film varied in the range 1018-1021 boron/cm3. The grain size, obtained from SEM images, showed grains with 2-4-μm average size, which decreases when the doping level increases. The thickness of the films obtained by SEM cross-section view decreased from 8 to 5 μm as the doping level increased from 0 (undoped film) to 1021 boron/cm3. The total residual stress was determined by measuring, for each sample, the (331) diamond Bragg diffraction peak for Ψ-values ranging from −60° to +60°, and applying the sin2 ψ method. For the micro-Raman spectroscopy the spectral analysis performed on each sample allowed the determination of the residual stress, from the diamond Raman peak shifts, and also the diamond purity, which decreases from 99 to 75% as the doping level increases. The type and magnitude of the residual stress obtained from X-ray and micro-Raman measurements agreed well only for undoped film, disagreeing when the doping level increased. We attributed this discrepancy to the domain size characteristic of each technique.  相似文献   

14.
We present a large amount of data showing how the electrical conductivity and Raman spectra of boron-doped CVD diamond films vary as a function of both B content and film type — in particular, diamond crystallite size. Three types of film have been investigated: microcrystalline diamond (MCD), faceted nanocrystalline diamond (f-NCD) and ‘cauliflower’ diamond (c-NCD). For the same B content (measured by SIMS), the conductance of MCD films was much higher than those for the two types of smaller grained films. Multi-wavelength laser Raman spectroscopy showed that Fano interference effects were much reduced for the smaller grain-sized material. The position of the Lorentzian contribution to the 500 cm 1 Raman feature was used to estimate the B content in each type of film, and compared to the value measured using SIMS. We found that the Raman method overestimated the concentration of B by a factor of ~ 5 for the f-NCD and c-NCD films, although it remains reasonably accurate for MCD films. The shortfall may be explained if only a small fraction of the B found in the small-grained films is being incorporated into substitutional sites. We conclude that in diamond films with a high concentration of grain boundaries, the majority of the B (80% in some cases) must be present at sites that do not contribute to the continuum of electronic states that give rise to metallic conductivity and the Fano effects. Such sites may include (a) interstitials, (b) the surface of the crystallites, or (c) bonded within the non-diamond carbon impurities present at the grain boundaries. This suggests that heavy doping of nanograined diamond films will give rise to a material with many different conducting regions, and possibly different conducting pathways and mechanisms.  相似文献   

15.
Different grades of CVD diamond films were prepared by 100 kW DC Arc Plasma Jet system. The films were characterized using optical microscope (OM), high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), and Raman spectroscopy. The results show that dark feature mainly is inclusions in CVD diamond films, the concentration are amorphous carbon and nitrogen. As for transparent optical grade diamond film, it has very high IR transparency and high thermal conductivity. The appearance of dark feature degraded the quality of CVD diamond film, apparently influencing IR transparency and thermal conductivity. But even in optical grade diamond film, there are very strong absorption features in the 7–9 μm region, this will limit the practical applications of diamond films grown by Plasma Jet as IR windows for CO2 lasers.  相似文献   

16.
Silicon has been the most widely studied substrate for the nucleation and growth of CVD diamond films. However, other substrates are of interest, and in this paper, we present the results of a study of the biased nucleation and growth of diamond films on bulk single and polycrystalline tungsten. Diamond films were nucleated and grown, using a range of bias and reactor conditions, and characterized by Raman spectroscopy and scanning electron microscopy (SEM). High-quality (100) textured films (Raman FWHM<4 cm−1) could be grown on both single and polycrystalline forms of the tungsten substrate. On carefully prepared substrates, by varying the bias treatment, it was possible to determine the nucleation density over a 4–5 order range, up to ∼109 cm−2. Raman measurements indicated that the diamond films grown on bulk tungsten exhibited considerable thermal stress (∼1.1 GPa), which, together with a thin carbide layer, resulted in film delamination on cooling. The results of the study show that nucleation and growth conditions can be used to control the grain size, nucleation density, morphology and quality of CVD diamond films grown on tungsten.  相似文献   

17.
Boron-doped p-type single crystalline chemical vapor deposition (CVD) homoepitaxial diamond films were investigated by electron paramagnetic resonance (EPR). Carbon dangling bond defects, which were accompanied by a nearby hydrogen atom, were observed in boron-doped p-type CVD diamond films on a IIa substrate similar to those observed in undoped diamond. This result suggested that the energy level position of the defects is located below the Fermi energy of boron-doped diamond, at around 0.3 eV above the valence-band top. The reason why the Fermi energy could be changed by the incorporation of boron atoms at low density (1016–1017/cm3) in the film in spite of the existence of the large defect density of EPR centers (1018/cm3) is thought to be that the singly occupied electron states of defects are located near the band edge. As for the thermal annealing effect of the defects, it was revealed that the concentration of the defects and the mobility of the p-type film did not change after annealing up to 1200 °C which is much higher than the temperature of boron–hydrogen pair dissociation.  相似文献   

18.
《Diamond and Related Materials》2000,9(9-10):1569-1573
This study explores issues related to the measurement of the field emission properties of nitrogen-doped diamond grown by microwave plasma chemical vapor deposition (CVD). Growth conditions have been optimized to produce films with a low concentration of sp2-bonded carbon which results in high electrical resistance. Field emission characteristics were measured in an ultrahigh vacuum with a variable distance anode technique. For samples grown with gas phase [N]/[C] ratios less than 10, damage from micro-arcs occurred during the field emission measurements. Samples grown at higher [N]/[C] content could be measured prior to an arcing event. The occurrence of a micro-arc is related to the film properties. The measurements indicate relatively high threshold fields (>100 V μm−1) for electron emission.  相似文献   

19.
Polycrystalline diamond films were grown on single crystal sapphire substrates using hot filament chemical vapour deposition (CVD). Problems with poor adhesion, stress and film cracking became severe for deposited areas greater than about (100 μm)2. Scanning electron microscopy analysis showed the films to be failing both at the interface and in the diamond layer itself. Transmission electron microscopy cross-sections of the interface showed that the interface was clean and free from non-diamond carbon impurities. Spallation problems in the diamond film could be reduced by introducing a barrier layer of epitaxial silicon grown on the sapphire prior to the diamond CVD step. Patterned silicon-on-sapphire wafers were then used as substrates for CVD of diamond in order to define features of linewidth more than 10 μm in the diamond films. Two methods were used: selective nucleation and lift off.  相似文献   

20.
We obtained an epitaxially grown free-standing diamond platelet utilizing epitaxial diamond film formed on a {100} iridium surface using a d.c. plasma CVD process. Iridium was selected as a suitable substrate material for the heteroepitaxy of diamond based on original criteria. Confocal Raman spectroscopy revealed that the diamond platelet contained little or no non-diamond carbon. The obtained diamond platelet is transparent to visible light and cleavable along the 110 direction on the surface. The angles between the top surface and the cross-sectional surfaces are approximately 55°, almost equal to the theoretical angle of 54.74° between {100} and {111} planes in cubic crystals. Therefore, the cross-sectional surfaces would be {111} planes of a typical facet for single-crystalline diamond. This means that the diamond platelet we have formed has relatively good crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号