首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
碎石回填地基上10000kN·m高能级强夯标准贯入试验   总被引:8,自引:2,他引:8  
通过在某沿海碎石土回填地基上成功实施的10000kN.m高能级强夯系列试验(3000,6000,8000,10000kN.m),为10000kN.m高能级强夯的的设计、监测和检测提供了依据。本文根据对不同能级强夯夯后地基的标准贯入试验分析与对比,得到了碎石土地基上10000kN.m强夯的有效加固深度等检测结果。建议若用于规范表格,对碎石土、砂土等粗粒土在10000kN.m强夯能级下的有效加固深度可取13~16m。  相似文献   

2.
高能级强夯地基土载荷试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过在某沿海碎石土回填地基上成功实施的10000 kN.m高能级强夯系列试验,为10000 kN.m高能级强夯的设计、监测和检测提供了依据。本文根据对不同能级强夯后地基土平板载荷试验结果的分析与对比,得到了碎石场地强夯后P–S曲线为直线(缓降)型,其极限承载力和变形模量高,变形量小;夯点与夯间地基土的密实度基本一致;无需过大增加荷载板的面积等试验结果。  相似文献   

3.
10000kN·m高能级强夯时的地面变形与孔压试验研究   总被引:13,自引:3,他引:13       下载免费PDF全文
通过在某沿海碎石土回填地基上成功实施的国内首次10000kN·m高能级强夯系列试验,为10000kN·m高能级强夯的的设计、监测和检测提供了依据。根据对试验过程中的地面变形和孔隙水压力的监测分析及与3000kN·m监测结果的对比,得到了碎石土地基上10000kN·m强夯的施工参数和孔压变化特征。  相似文献   

4.
通过在某沿海碎石土回填地基上成功实施的国内首次10000kN.m高能级强夯系列试验(3000kN.m、6000kN.m、8000kN.m、10000kN.m),为10000kN.m高能级强夯的的设计、监测和检测提供了依据。本文根据试验过程中地面变形的监测分析及与3000kN.m监测结果的对比,得到了碎石土地基上10000kN.m强夯的施工参数和地面变形特征,所得结论对高能级强夯地基处理的设计、施工具有实用价值。  相似文献   

5.
某大型厂房场地的建设为大型挖填方工程,场地地层岩性以红层软岩为主,填方厚度0~60m不等。为分析不同高能级的强夯处理对红层软岩碎石土地基的加固效果,现采用15000kN·m、12000kN·m、8000kN·m三个强夯能级对碎石土填方地基进行现场试验,强夯处理后,分别进行了平板载荷试验、动力触探试验、地震波检测、多道瞬态面波测试等试验,分析强夯加固前后地基土物理力学性质的变化规律,评价高能级强夯处理该地区碎石土高填方的效果。结果表明15000kN·m和8000kN·m能级强夯对于填土加固效果较好,12000kN·m能级强夯对于填土加固效果较差,原因是12000kN·m能级的试夯区域细粒土含量较多且含水率较高,并对红层软岩对强夯效果的影响因素进行了分析,可为类似填方场地地基处理提供借鉴。  相似文献   

6.
通过在某沿海碎石回填土地基上国内首次实施18 000 kN·m高能级强夯法加固地基,并分别应用平板载荷试验、超重型动力触探试验、标准贯入试验以及瑞利波试验方法对高能级强夯处理地基进行效果检验及分析,得到了碎石回填土地基上18 000 kN·m高能级强夯的有效加固深度等检测效果,有效加固深度为15.5 m,地基承载力为290 kPa,若用Menard公式计算,其修正系数为0.37,为18 000 kN·m高能级强夯法的参数设计、施工工艺和工程检测提供依据.  相似文献   

7.
为了探讨山谷型与滨海型两种不同土质条件下碎石回填地基的强夯加固效果,开展了8000kN·m能级的现场强夯对比试验;同时考虑滨海大型工程建设地基处理施工的需要,在沿海地区实施了10000,15000kN·m高能级强夯的现场试验。通过对各场地不同能级试夯前后地基动力触探与静力载荷试验结果的分析与对比研究,得出如下结论:①采用8000kN·m夯击能处理山谷型厚层碎石回填地基,其有效加固深度可达10.0~11.5m;处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为8.5~9.0m;②采用10000kN·m夯击能处理滨海山前厚层碎石回填地基,其有效加固深度为12~12.5m;③采用15000kN·m夯击能处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为11.5m;④若采用梅纳公式的修正形式预估强夯的有效加固深度,其修正系数取值范围建议为0.29~0.40;对于软弱下卧层浅、高地下水等不利情况应取低值,对于回填碎石层厚、且级配较好时可取高值。  相似文献   

8.
强夯法加固地基是近年才发展起来的一项新技术,有待于我们在工程实践中不断丰富和完善。在此,结合齐鲁乙烯工程,根据30余万 m~2强夯地基的工程实践,对在湿陷性黄土地区应用强夯法的几个问题,提出探讨性看法。一、夯点布置及夯击遍数问题在齐鲁乙烯工地,夯点布置有正方形(井点)和梅花形网格排列两种形式。不同能级的强夯,采用不同的夯距.1000kN·m、2000kN·m、3000kN·m 能级的夯点间距分别为3.5~4m、4.5~5m、5~6m。  相似文献   

9.
强夯处理湿陷性黄土的应用   总被引:1,自引:1,他引:0  
冯振荣 《山西建筑》2004,30(19):68-69
结合工程实例 ,从地基特点、强夯施工工艺及技术参数、检测结果三个方面介绍高能级 ( 80 0 0kN·m、60 0 0kN·m)强夯法在处理湿陷性黄土和回填土的应用 ,并对施工中的问题进行分析和处理。  相似文献   

10.
针对填海工程大厚度碎石回填地基,开展了3000k N·m、6000k N·m和10000k N·m的高能级强夯现场试验,通过夯前、夯后现场超重动力触探试验、瑞雷波检测和夯后平板载荷试验结果的对比分析,确定出不同夯击能下强夯的影响深度和地基加固效果。综合分析认为,3000k N·m夯击能影响深度约为6m,承载力特征值为180k Pa;6000k N·m夯击能影响深度为6~9m,承载力特征值为200k Pa;10000k N·m夯击能影响深度为9~12m,承载力特征值为200k Pa。试验结果可为同类地区高能级强夯工程提供参考。  相似文献   

11.
采用瑞雷波法对强夯地基进行大面积普查,既能降低成本、扩大检测面,又能提高检测速度和精度。通过对广东惠州某沿海碎石土回填地基上成功实施的国内首次10000kN·m高能级强夯系列试验前后瑞雷波检测结果的对比分析,得到了碎石土地基上10000kN·m强夯的地基承载力等。瑞雷波法检测得到的结论可指导强夯地基处理的检测工作。  相似文献   

12.
通过碎石土回填地基采用高能级强夯技术的工程实例,得到了大量的静载试验、动力触探等现场实测数据,比较完整地反映了12000kN.m高能级强夯的加固效果,分析比较了碎石填土地基夯前和夯后的土工性能指标、地基承载力及变形模量。研究表明,深度12m以内各土层的地基承载力均具有较大幅度的提高,可为其它工程高能级强夯技术的施工、检...  相似文献   

13.
高能级强夯法在处理湿陷性黄土地基中的应用   总被引:2,自引:0,他引:2  
马安刚 《建筑技术》2001,32(3):166-167
高能级强夯一般指每单击夯击能大于6000kN·m强夯 ,用其加固处理大厚度湿陷性黄土地基 ,对提高地基土强度和均匀性 ,消除湿陷性具有明显的效果。施工工艺和参数的选择对强夯效果影响很大。施工中对夯击裂缝和夯击能分配问题应认真处理  相似文献   

14.
郭伟 《地基处理》2010,21(1):10-15
强夯法是一种经济高效的地基处理方法。本文对国内最大的黄土塬地区湿陷性黄土分别采用3000kN·m、8000kN·m、12000kN·m能级强夯进行加固,分别通过平板载荷试验对加固处理后的地基进行浸水载荷试验与不浸水载荷试验检测;采用了不同面积的载荷板进行试验,验证不同能级强夯加固后浅层地基承载力的设计值,对比分析得到一些有价值的参数和数据;并为大面积施工提供一些建议。  相似文献   

15.
针对沿海下卧软弱夹层、高地下水位的厚层碎石回填地基,开展了3个试验区的强夯系列试验与对比研究。试验区A:14000,10000和8000 kN.m能级单点夯试验;相同能级(6000 kN.m)、不同压强夯锤对比试验,即34 kPa(18 t),50 kPa(25 t)和90 kPa(46 t)夯锤单点夯。试验区B:12000 kN.m能级强夯群夯试验。试验区C:15000 kN.m能级强夯群夯试验。通过现场圆锥动力触探试验、标准贯入试验与钻孔取样室内土工试验,对同一能级强夯前后、不同能级夯后的地基承载力进行对比分析,给出了沿海复杂地质条件下碎石回填地基上不同夯击能的有效加固深度及梅纳深度公式的修正系数,为同类地区高能级强夯工程的设计、监测与检测提供了参考。  相似文献   

16.
根据8 000、12 000 kN·m高能级强夯大面积处理地基加固的综合检测试验数据,结合室内试验数据及黄土地区的特殊性,得到了高能级强夯在黄土地区的有效加固深度、湿陷性处理效果;分析了高能级强夯处理湿陷性黄土的加固效果、加固深度及能级变化对地基处理效果的影响.结果表明:该研究为进一步分析高能级强夯的加固机理,尤其在湿陷性黄土地区的加固机理提供了依据,也为高能级强夯的大面积设计、施工和检测提供了优化数据.  相似文献   

17.
10 000kN·m高能级强夯振动加速度实测分析   总被引:2,自引:0,他引:2  
通过在沿海某碎石回填地基上成功实施的10 000kN.m高能级强夯系列试验,为10 000kN.m高能级强夯的设计、监测和检测提供了依据。根据对试验过程中地面振动加速度的监测分析,得到了碎石土地基上10 000kN.m强夯施工时的加速度衰减方程和传播特点,可用于分析高能级强夯地基处理的环境效应。  相似文献   

18.
滨海含软土夹层粉细砂地基高能级强夯加固试验研究   总被引:1,自引:0,他引:1  
滨海粉细砂场地地基常分布有软土夹层或淤泥包且地下水位较高,地基处理难度大。目前采用高能级强夯加固滨海粉细砂场地的工程案例较少。结合具体工程研究了某地下水位较高且含软土夹层的滨海粉细砂场地上开展的5、8、12、15MN·m能级强夯加固试验。除5MN·m能级强夯试验区外,其余试验区均先采取高能级点夯加固深层土体,然后采用中等能级点夯加固夯点间土,最后利用低能级满夯加固地基浅层。对比分析了夯沉量和强夯前后的旁压、静力触探测试数据,发现夯击7~8击后夯沉量变化明显减小,每遍的单点夯击击数宜控制在8~9;在有效加固深度范围内,土体的旁压模量和静力触探锥尖阻力均明显提升,高能级强夯能有效消除滨海粉细砂的液化势。试验场地内上述各个能级的有效加固深度分别为7.5、9、10.5、10m,在有效加固深度范围内,表征土体相对加固程度的提升系数沿深度大致呈直线下降。现场试验数据还表明,将地下水位降低到距地表以下2.5m有助于提高加固效果;软土夹层的存在会明显影响加固效果及限制有效加固深度的发展,因受软土夹层的影响,场地15MN·m能级强夯的有效加固深度明显偏小。建议在级配不良的滨海粉细砂场地上按照规范JGJ 79—2012中细颗粒土的标准来确定高能级强夯的有效加固深度。  相似文献   

19.
通过破渣上杂填土地基强夯试验,说明强夯法加固该场地地基的可行性。当采用1000kN·m夯击能时,建议Manard公式的修正系数取0.6。  相似文献   

20.
采用高能级强夯处理深厚回填土地基时,可提高地基土的强度和均匀性,降低压缩性,减小沉降量,消除液化和湿陷性等。目前对高能级强夯有效加固深度的研究尚未成熟,规范给出的经验公式又不适用,因此进行高能级强夯有效加固深度计算方法和影响因素研究非常必要。本文针对在碎石土、湿陷性黄土、砂土三种回填土地基上进行的高能级强夯试验,采用平板载荷试验、动力触探试验、瑞利波测试方法研究强夯前、强夯后浅层地基承载力和深层密实度的变化,提出考虑土类别的高能级强夯有效加固深度计算公式,并得到了修正系数取值表。通过分析夯点间距、锤底面积对不同回填土地基有效加固深度的变化规律,得到高能级强夯优化设计参数,可为工程实践提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号