首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 734 毫秒
1.
SiCp/AZ61镁基复合材料制备工艺的优化   总被引:2,自引:1,他引:2  
采用半固态搅拌法制备了SiCp/AZ61镁基复合材料。利用正交试验法研究了SiC颗粒加入量、搅拌温度、搅拌时间等关键工艺参数对SiCp/AZ61镁基复合材料力学性能的影响。结果表明,SiC颗粒加入量对复合材料的力学性能有着显著的影响,其次是搅拌时间和搅拌温度。在试验条件下,SiCp/AZ61镁基复合材料的半固态搅拌工艺方案可优化为:SiC颗粒加入量为6%,搅拌温度为595℃,搅拌时间为5min。断口分析显示,增强颗粒加入量为6%的SiCp镁基复合材料室温断口形貌呈脆性断裂特征。  相似文献   

2.
纳米SiC颗粒增强AZ61镁基复合材料制备工艺的优化   总被引:1,自引:0,他引:1  
采用高能超声方法制备了纳米SiC颗粒增强AZ61镁基复合材料.利用正交试验法研究了纳米SiCN含量、超声导入温度和超声作用时间等关键工艺参数对纳米SiCp/AZ61镁基复合材料力学性能的影响.试验结果表明,纳米SiC颗粒含量对复合材料的抗拉强度和伸长率的影响最显著.在本试验条件下,超声制备纳米SiC颗粒增强AZ61镁基复合材料的最佳工艺方案可优选为:纳米SiC颗粒含量为1%、超声导入温度为650℃、超声作用时间为15min.  相似文献   

3.
利用化学镀法制备了Cu包覆SiCp,研究了SiCp及Cu-SiCp增强镁基复合材料(SiCp/AZ91D和Cu-SiCp/AZ91D)的性能。采用扫描电镜(SEM)、X射线衍射仪及UTM4304电子万能试验机分析测试了镁基复合材料的组织结构,相组成及力学性能。结果表明,SiC颗粒增强镁基复合材料主要由α-Mg和Mg2Si相组成,SiC镀Cu后能够进一步细化晶粒,同时在Mg2Si相周边出现层片状的α+β相。SiCp/AZ91D和Cu-SiCp/AZ91D复合材料的力学性能显著高于AZ91D基体合金,Cu-SiCp/AZ91D复合材料的的抗拉强度达195.7 MPa。室温拉伸时,AZ91D合金表现为典型的脆性断裂特征,而SiCp/AZ91D和Cu-SiC/AZ91D复合材料表现为韧性断裂及部分准解理断裂。  相似文献   

4.
研究了时效处理时间对SiC/AZ81镁基复合材料显微结构和性能的影响。结果表明,随着时效时间的延长,SiC/AZ81镁基复合材料中β-Mg_(17)Al_(12)析出相数量先增多后减少,析出相尺寸先减小后增大;不同时效处理时间下SiC/AZ81镁合金基复合材料中均无其他新相生成;复合材料的压缩屈服强度先增大后减小,当时效时间为20 h时,复合材料的压缩屈服强度达到最大值,为182.1 MPa;SiC/AZ81镁合金基复合材料的磨损率先增大后减小,当时效时间为16 h时,SiC/AZ81镁合金基复合材料具有最高的磨损率。因此,最佳时效时间为16 h。  相似文献   

5.
采用真空压力浸透法制备SiCp/AZ91复合材料,研究其显微组织、力学性能和耐磨性。结果表明,SiC颗粒均匀分布于金属基体中,并与基体界面结合良好。Mg17Al12相在SiC颗粒附近优先析出,SiC与AZ91基体的热膨胀系数失配导致高密度位错的产生,加速基体的时效析出。与AZ91合金相比,SiC颗粒的加入提高了复合材料的硬度和抗压强度,这主要是由于载荷传递强化和晶粒细化强化机制。此外,由于SiC具有优异的耐磨性,在磨损过程中形成稳定的支撑面保护基体。  相似文献   

6.
利用人工神经网络(ANN)的BP(back propagation)算法,建立了复合材料力学性能预测模型。模型由三层神经元组成,分别为输入层、隐含层和输出层。以SiC_P/AZ61复合材料的力学性能与SiC的颗粒体积分数的关系为研究对象,选取了七组试验数据作为学习样本,用建立的网络预测未知,并给出预报曲线和预测程序界面图。与试验结果比较表明,所建立的网络能反映SiC_P/AZ61复合材料中SiC的颗粒体积分数与其力学性能之间的关系,为试验设计提供了一种新的思路。  相似文献   

7.
采用搅拌铸造法制备了不同尺寸的SiCP增强AZ91D镁基复合材料,并对其显微组织和力学性能进行了研究。结果表明,当SiCp加入量为2%,SiC颗粒尺寸为0.5μm时,SiCp/AZ91D镁基复合材料晶粒细小,分布均匀。复合材料的抗拉强度达到150.6 MPa,与AZ91D基体相比提高了57.6%,但伸长率有所降低。  相似文献   

8.
纳米SiC颗粒增强AZ91D复合材料的制备及性能   总被引:2,自引:0,他引:2  
利用高能超声辅助法制备纳米SiC颗粒(n-SiCp)增强AZ91D镁基复合材料(n-SiCp/AZ91D),并对其显微结构和室温力学性能进行测试分析。结果表明:纳米SiC颗粒的加入能够起到细化晶粒的作用,纳米颗粒在基体中的分布比较均匀,超声波辅助技术能够有效地分散纳米颗粒,在重力铸造下所制备的复合材料的抗拉强度、屈服强度和硬度均高于基体,尤其是屈服强度较基体提高了57%。  相似文献   

9.
利用Abaqus有限元分析软件研究了不同体积分数和不同形状颗粒的SiC/AZ91D镁基复合材料在单轴拉伸下的裂纹萌生、扩展以及断裂机制。结果表明,圆形颗粒SiC/AZ91D镁基复合材料的屈服强度为248 MPa,正方形颗粒SiC/AZ91D镁基复合材料的屈服强度为190 MPa,原始形状颗粒镁基复合材料的屈服强度为210 MPa。颗粒体积分数为10%、15%和20%的复合材料裂纹断裂时间分别在施载后的第40、第33和第31μs。圆形颗粒复合材料的裂纹扩展机制是基体损伤萌生的裂纹扩张导致材料断裂,而正方形颗粒复合材料和原始形状颗粒复合材料的裂纹扩展机制是颗粒与基体交界处萌生裂纹,导致主裂纹形成并产生次生裂纹扩张直至材料断裂。  相似文献   

10.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

11.
采用搅熔铸造法制备碳化硅颗粒增强镁基复合材料SiC/AZ61,通过动态机械热分析、显微组织观察和XRD衍射分析了其蠕变性能。结果表明:碳化硅颗粒的加入细化了晶粒,SiC大多分布在晶界处,颗粒镁基复合材料的蠕变性能与AZ61合金相比得到了显著的改善。蠕变性能的提高主要因为高温时具有高的热稳定性的SiC颗粒取代晶界处高温下易软化的8相(Mg17Al22)钉扎晶界,阻止了晶界的交滑移和位错的攀移。  相似文献   

12.
n-SiC_p/AZ91D镁基复合材料高温力学性能   总被引:1,自引:1,他引:0  
采用机械搅拌和高能超声处理法制备了n-SiCp/AZ91D镁基复合材料,测试了复合材料的室温及高温力学性能。结果表明,n-SiCp的加入能显著提高复合材料的高温力学性能,当n-SiCp加入量为1.5%时,复合材料的抗拉强度和伸长率都达到最大值。随着温度的升高,复合材料的强度降低,伸长率增加。断口形貌观察表明,复合材料的断裂方式由室温下的准解理断裂转变为高温下的韧性断裂。  相似文献   

13.
文章采用自行设计的高能超声装置制备SiCp/AZ31镁基纳米复合材料,并对制备的复合材料进行显微组织观察和力学性能测试。实验结果表明,高能超声波能使纳米SiCp在镁合金熔体中均匀分散,复合材料抗拉强度和屈服强度都比基体有较大提高,并能保持较高的延伸率。另外,对高能超声波制备金属基复合材料的分散机理,以及SiCp增强镁基纳米复合材料的增强机制,进行了初步探讨。  相似文献   

14.
采用微波烧结制备了(SiC+B4C)p/AZ91D复合材料,研究了不同体积分数(SiC+B4C)p(0%、5%、10%、15%、20 vol%)对复合材料组织及性能的影响。结果表明:(SiC+B4C)p/AZ91D复合材料的组织主要由α-Mg、SiC、B4C、Mg17Al12和少量MgO等组成。随着(SiC+B4C)p含量的增加,(SiC+B4C)p/AZ91D复合材料的相对密度减小,显微硬度增加,而抗压强度先增后降,当(SiC+B4C)p含量为15%时达到最大值。15%(SiC+B4C)p/AZ91D复合材料的显微硬度和抗压强度分别达到196.16 HV0.025和326.3 MPa,相对于未添加(SiC+B4C)p的AZ91D材料分别提高了145%和120%。随着(SiC+B4C)p含量的增加,复合材料的耐磨性先提高后降低,磨痕由清晰的犁沟形貌逐渐模糊,磨损机制由磨粒磨损转变为剥层磨损。  相似文献   

15.
针对风力发电机组摩擦材料对性能的要求,在不同的温度下,成功制备出了SiC颗粒增强的AZ91镁合金基复合材料,并且对其拉伸性能进行研究.结果表明,SiCp/AZ91复合材料的抗拉强度高于AZ91基体镁合金;在同样的烧结温度下,直径较小的SiC颗粒对复合材料的抗拉强度提高幅度较大.  相似文献   

16.
采用反复塑性变形(RPW)技术,结合挤压工艺制备出SiC颗粒增强AZ31镁基复合材料,研究了循环次数(RPW次数)对SiC_p/AZ31镁基复合材料显微组织和性能的影响.结果表明,反复塑性变形具有明显的AZ31基体晶粒细化、SiC_p细化和分散作用,能显著提高SiC_p/AZ31复合材料的抗拉强度和硬度,并改善其塑性.在SiC_p的体积分数为4%时,经RPW为300次的热挤压后,AZ31基体晶粒粒径达到最小值20 μm,SiC_p被粉碎成3 μm以下的微粒,且弥散分布于合金基体中,复合材料的室温抗拉强度和硬度(HV)达到或接近最大值,分别为359 MPa和107.  相似文献   

17.
The mechanical properties of magnesium matrix composties can be further improved by aging treatment.To study the aging behavior of SiC particles reinforced AZ61 magnesium matrix composites fabricated by ultrasonic method,an investigation has been undertaken by means of Vickers hardness measurement,scanning electron microscopy (SEM) and energy spectrum analyzing apparatus.The box-type heat treatment furnace was used in the study.The results showed that no discontinuous cellular precipitation is observed at the grain boundaries in the magnesium matrix of the composite while the Mg17Al12 preferentially precipitates in the matrix.The time to reach the peak hardness for AZ61 alloy or SiCp/AZ61 magnesium matrix composites is reduced with the increase of aging temperature.At the same temperature,the composite exhibit an accelerated aging manner but lower aging efficiency,compared with the unreinforced matrix alloy.The microhardness of the composite is higher than that of the unreinforced matrix alloy,because that the SiC particles distributes homogeneously in the matrix alloy under the ultrasonic processing condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号