首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, entropy generation analysis for Cu–water nanofluid mixed convective flow in an inclined channel occupied with a saturated porous media with Navier slip and convective boundary conditions is explored. The governing equations composed of equations of velocity and temperature are nondimensionalized and then solved utilizing the technique of homotopy analysis. Temperature and velocity profile expressions are acquired, which are then used to calculate the entropy produced in the scheme. The impacts of the corresponding fluid parameters are addressed in‐depth on velocity, temperature, entropy generation, Bejan number, Nusselt number, skin friction, volume flow rate, and heat carried out by the fluid for nanofluid concentration. Entropy has been observed to be minimal in all cases just above the channel center and maximum at the channel's bottom wall. Fluid friction‐generated entropy has been discovered to have a higher influence on entropy generation. We also provide a comparative study with existing literature to validate our current results.  相似文献   

3.
The entropy generation (second law of thermodynamics) analysis of gyrotactic microorganism flow of power-law nanofluid with slip effects and combined effect of heat and mass transfer past a stretching sheet has been studied. The flow is maintained with Lorentz force and thermal radiation. The governing nonlinear partial differential equations are transformed into ordinary differential equations using similarity transformations. The impact of different physical parameters, such as convective bouncy parameter, power-law parameter, Brownian motion parameter, thermophoresis parameter, and slip parameter for velocity and temperature on the entropy generation number (Ns) are plotted graphically with the help of MATLAB built in bvp4c solver technique. Further, the uniqueness of this study is to find out the ratios of various irreversibilities due to thermal and mass diffusions, momentum diffusion, and microorganism over the total entropy generation rate. Our results showed that the power-law parameter and Brownian motion parameter influenced entropy generation positively. The slip parameter for velocity and temperature and the thermophoresis parameter helps to reduce the entropy production.  相似文献   

4.
This study's primary objective is to analyze the entropy generation in an unsteady magnetohydrodynamics (MHD) Eyring–Powell nanofluid flow. A surface that stretched out exponentially induced flow. The influences of thermal radiation, thermophoresis, and Brownian motion are also taken into consideration. The mathematical formulation for the transport of mass, momentum, and heat described by a set of partial differential equation is used, which is then interpreted by embracing the homotopy analysis method and with a fourth-order precision program (bvp4c). Graphical results display the consequences of numerous parameters on velocity, temperature, concentration, and entropy generation. Moreover, escalating amounts of the magnetic parameter, thermal radiation parameter, Reynolds number, and Brinkman number improve the entropy profile of the nanofluid. The rate of heat flux and the mass flux conspicuously improves for non-Newtonian fluid as compared to Newtonian fluid.  相似文献   

5.
The results are reported of an investigation of the heat transfer characteristics and entropy generation for a graphene nanoplatelets (GNP) nanofluid with specific surface area of 750 m2/g under laminar forced convection conditions inside a circular stainless steel tube subjected to constant wall heat flux. The analysis considers constant velocity flow and a concentration range from 0.025 wt.% to 0.1 wt.%. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, thermal performance factor and entropy generation is investigated. An enhancement in thermal conductivity for GNP of between 12% and 28% is observed relative to the case without nanoparticles. The convective heat transfer coefficient for the GNP nanofluid is found to be up to 15% higher than for the base fluid. The heat transfer rate and thermal performance for 0.1 wt.% of GNP nanofluid is found to increase by a factor of up to 1.15. For constant velocity flow, frictional entropy generation increases and thermal entropy generation decreases with increasing nanoparticle concentration. But, the total entropy generation tends to decrease when nanoparticles are added at constant velocity and to decrease when velocity rises. Finally, it is demonstrated that a GNP nanofluid with a concentration between 0.075 wt.% and 0.1 wt.% is more energy efficient than for other concentrations. It appears that GNP nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.  相似文献   

6.
This study explores the entropy generation analysis on unsteady nonlinear radiative ethylene glycol-based Casson nanofluid flow near stagnation point towards a stretching sheet through a porous medium. Analysis has been accomplished in the presence of an inclined magnetic field, heat generation, homogeneous–heterogeneous reactions, and viscous dissipation with velocity slip and convective boundary conditions. The nondimensional governing equations are solved by the shooting technique with the help of the RK45 method. We have experimented with copper and silver nanoparticles and a comparative analysis has been highlighted for both copper and silver nanofluids. Numerical outcomes are executed by the MATLAB built-in bvp4c function. The consequences of the experiment for various pertinent flow parameters are portrayed by graphs and tables for both the Ag- and Cu-Casson nanofluids. Results reveal that the enhancement of nanoparticles volume fraction accelerates temperature but it slows down concentration and velocity distributions. Higher values of the Eckert number boost velocity and temperature but reduce skin friction coefficient and Nusselt number. Enhancement of the Brinkman number boosts up entropy generation but it slows down Bejan's number. The results of the model can be applied in the movement of biological fluids, separation of biomolecules, glass manufacturing, paper production, food processing, crude oil purification, polymer drag reduction, and cooling atomic reactors.  相似文献   

7.
In this article, we performed the entropy generation of free convective chemically reacting second‐grade fluid confined between parallel plates in the influence of the Hall and Ion slip with heat and mass fluxes. Let there be a periodic suction/injection along with the plates, the governing flow field equations are reduced as a set of coupled nonlinear ordinary differential equations by using appropriate similarity transformations then solved numerically with shooting method based on Runge‐Kutta 4th order scheme. The results are analyzed for velocity in axial and radial directions, temperature distribution, concentration distribution, entropy generation number, Bejan number, mass and heat transfer rates with respect to distinct geometric, and fluid parameters and shown graphically and tables. It is observed that the entropy generation is enhanced with Prandtl number, whereas decreases with a second‐grade parameter, the effects of Hall and Ion slip parameters on velocity components, temperature and entropy generation number are the same. The entropy generation number the fluid is enhanced with the suction‐injection parameter whereas, the concentration of the fluid decreases with the increasing of chemical reaction parameter.  相似文献   

8.

The non-Newtonian fluid can be considered as a third-grade fluid with variable viscosity. In this case, the rate of fluid strain can be formulated using the third-grade fluid analogy. In the present study, entropy generation due to non-Newtonian fluid flow in a pipe is investigated. A third-grade fluid with variable viscosity is accommodated in the analysis. Analytical solutions for velocity and temperature distributions are presented, and an entropy generation number is computed for different non-Newtonian parameters, viscosity parameters, and Brinkman numbers. It is found that increasing the non-Newtonian parameter lowers the entropy generation number. This is more pronounced in the region close to the pipe wall. Increasing the viscosity parameter and Brinkman number enhances the entropy generation number, particularly in the vicinity of the pipe wall.  相似文献   

9.
Entropy generation of an Al2O3–water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side‐wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 and 107 and volume fraction between 0 and 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation, and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer, and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.  相似文献   

10.
Thermodynamics and heat transfer of an impinging nanofluid flow upon a cylinder with constant surface temperature and embedded in porous media are investigated. Numerical solutions reveal the flow velocity and temperature fields as well as the Nusselt number. These are then used to calculate the rate of entropy generation within the system by viscous and heat transfer irreversibilities. It is demonstrated that changes in the concentration of nanoparticles modify the thermal and hydrodynamic boundary layers and hence can alter the Nusselt number and entropy generation considerably. However, the shear stress on the surface of the cylinder is observed to be less affected by the variations in the concentration of nanoparticles. Further, the Reynolds number and non-uniform transpiration are shown to affect the Nusselt number and entropy generation. It is argued that the influences of Reynolds number on the boundary layer thickness can majorly modify the irreversibility and Bejan number.  相似文献   

11.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   

12.
The importance of gold and silver nanoparticles in the blood flow has immense applications in biomedicine for the treatment of cancer disease and wound treatment due to their large atomic number and antimicrobial property. The current study deals with the magnetohydrodynamic and electroosmotic radiative peristaltic Jeffrey nanofluid (blood–silver/gold) flow with the effect of slip and convective boundary conditions in the nonsymmetric vertical channel. The nondimensional governing equations have been solved analytically and the exact solutions have been presented for velocity, temperature, shear stress, trapping, entropy generation, pressure gradient and heat transfer coefficient. The pictorial representations have been prepared for the flow quantities with respect to fluid flow parameters of interest. It is noticed from the current study that the gold-based nanofluids exhibit higher velocity than silver-based nanofluids. Enhancement of thermal radiation decreases the total entropy generation. The size of the tapered bolus decreases with the enhancement of magnetic field strength. The present model is applicable in designing pharmacodynamic pumps and drug delivery systems.  相似文献   

13.
An analytical study on the viscous dissipation effect on entropy generation in laminar fully developed forced convection of water–alumina nanofluid in circular microchannels is reported. In the first-law analysis, closed form solutions of the temperature distributions in the radial direction for the models with and without viscous dissipation term in the energy equation are obtained. The results show that the heat transfer coefficient decreases with nanoparticle volume fraction largely in the laminar regime of nanofluid flow in microchannel when the viscous dissipation effect is taken into account. In the second-law analysis, the two models are compared by analyzing their relative deviations in entropy generation for different Reynolds number and nanoparticle volume fraction. When the viscous dissipation is taken into account, the temperature distribution is prominently affected and consequently the entropy generation ascribable to the heat transfer irreversibility is significantly increased. The increase of entropy generation induced by the increase of nanoparticle volume fraction is attributed to the increase of both the thermal conductivity and viscosity of nanofluid which causes augmentation in the heat transfer and fluid friction irreversibilities, respectively. By incorporating the viscous dissipation effect, both thermal performance and exergetic effectiveness for forced convection of nanofluid in microchannels dwindle with nanoparticle volume fraction, contrary to the widespread conjecture that nanofluids possess advantage over pure fluid associated with higher overall effectiveness from the aspects of first-law and second-law of thermodynamics.  相似文献   

14.
This study investigates the Darcy-Forchheimer flow of Sisko nanofluid with viscous dissipation and convective thermal boundary conditions. The Buongiorno two-component nanoscale model is deployed for nanofluid characteristics, which take into account the physical phenomena responsible for the slip velocity between the base fluid and the nanoparticles such as thermophoresis and Brownian diffusion. The Darcy- Forchheimer model employed here includes the effects of boundary and inertial forces. The nonlinear coupled partial differential equations governing the fluid flow are converted into the nonlinear ordinary differential equations by choosing suitable similarity transformations. The nondimensionalized differential equations are then solved utilizing the finite difference based bvp-4c tool in MATLAB software. The numerical solutions are presented graphically to demonstrate the impact of involved physical parameters on temperature, velocity, and nanoparticle volume fraction. Moreover, the rate of heat transfer, mass transfer, and skin friction are physically interpreted. The present investigation reveals that the Darcy number enhances the velocity and depleted the temperature while the Forchheimer number depleted the velocity and enhances the temperature of the Sisko nanofluid. The thermophoresis, Brownian diffusion parameters, and the Forchheimer number contribute to the reduction in the heat transfer rate while the Darcy number enhances it. The skin friction at the wall can be controlled by controlling the values of Darcy number.  相似文献   

15.
This investigation focuses on the influence of thermal radiation on the magnetohydrodynamic flow of a Williamson nanofluid over a stretching sheet with chemical reaction. The phenomena at the stretching wall assume convective heat and mass exchange. The novelty of the present study is the thermodynamic analysis in the nonlinear convective flow of a Williamson nanofluid. The resulting set of the differential equations are solved by the homotopy analysis method. We explored the impacts of the emerging parameters on flow, heat, and mass characteristics, including the rate of entropy generation and the Bejan number through graphs, and extensive discussions are provided. The expressions for skin friction, Nusselt and the Sherwood numbers are also analyzed and explored through tables. It is concluded that the rate of mass transfer may be maximized with the variation of the Williamson and chemical reaction parameters. Moreover, the entropy generation rate and the Bejan number are augmented via increasing the Williamson parameter.  相似文献   

16.
This paper concerns the second law analysis of free convective squeezing flow of a chemically reacting Casson fluid confined between two parallel disks with Hall and Ion slip effects. The upper one is impermeable and the lower disk is porous. The linear momentum, energy balance and mass partial differential equations converted as system of ODEs by similarity transformations and tackled with shooting method via fourth order Runge‐Kutta scheme. The impact of various dimensionless geometric and fluid parameters on the velocity fields, temperature and concentration fields, entropy generation and Bejan numbers are studied and presented in the form of pictorially. The present results are correlated with already published outcomes for viscous case and found to be good agreement. The Bejan number of the fluid enhances with Ion slip parameter, whereas the concentration profile of the fluid is decreases with increasing of the Casson fluid parameter. The entropy generation of the fluid is enhanced with Eckert number whereas the Bejan number is decreased with suction/blowing parameter  相似文献   

17.
Chemically reacting magnetohydrodynamic radiative flow of convective free stream nanofluid through a stretching cylinder using Buongiorno's model is discussed. The behavior of Brownian motion and thermophoresis is also appropriate. By adopting the similarity transformation, the partial differential equation is diminished into a first-order ordinary differential equation (ODE). Since transformed equations are highly nonlinear these ODEs are solved by using mathematical simulation. The shooting procedure has been adopted to resolve converted equations along the attendant Runge–Kutta–Fehlberg technique. The reason behind the present work is to research the effects of different parameters of fluid, namely, magnetic parameter, free stream velocity, Brownian motion, thermophoresis, chemical reaction, heat radiation, Lewis number on nanoparticle concentration, temperature, and velocity distribution. The impact of significantly participating parameters on velocity, concentration, and temperature distribution is distinguished with appropriate physical significance. The convergence of solutions for temperature, velocity, and concentration profiles is studied carefully. The measured challenges of nanofluids are scale-up capacity, increase in nanofluid viscosity, nanoparticle dispersion, and nanofluid cost. It is observed that nanoparticle temperature rises for more value of Brownian motion parameter while it declines for higher Lewis number. The current study in the cylindrical region is related to novel free stream flow in the presence of chemical reactions along with convective conditions which find applications in electronic systems like microprocessors and in a wide variety of industries and in the field of biotechnology. The current research helps control the transport phenomena, helping production companies to find the quality of the desired product.  相似文献   

18.
This paper examines forced convection heat transfer and entropy generation of a nanofluid laminar flow through a horizontal channel with wavy walls in the presence of magnetic field, numerically. The Newtonian nanofluid is composed of water as base fluid and Al2O3 as nanoparticle which is exposed to a transverse magnetic field with uniform strength. The inlet nanofluid with higher temperature enters the cool duct and heat is exchanged along the walls of a wavy channel. The effects of the dominant parameters including Reynolds number, solid volume fraction, Hartmann number, and different states of amplitude sine waves are studied on the local and average Nusselt number, skin friction, and total entropy generation. Computations show excellent agreement of the present study with the previous literature. The computations indicate that with the increasing strength of a magnetic field, Nusselt number, skin friction, and total entropy generation are increased. It is found that increasing the solid volume fraction of nanoparticles will increase the Nusselt number and total entropy generation, but its effect on the skin friction is negligible. Also, results imply that increasing amplitude sine waves of the geometry has incremental effect on both Nusselt number and skin friction, but its effect on the total entropy generation is not so tangible.  相似文献   

19.
The key purpose of this article is to examine magnetohydrodynamics flow, generative/absorptive heat, and mass transfer of nanofluid flow past a wedge in the presence of viscous dissipation through a porous medium. The investigation is completely theoretical, and the present model expresses the influence of Brownian motion and thermophoresis using the nanofluid Buongiorno model. The fundamental model of partial differential equations is reframed into the structure of ordinary differential equations implementing the nondimensional similarity transformation, which are tackled through the fourth–fifth-order Runge–Kutta–Fehlberg algorithm together with the shooting scheme. The analysis of sundry nondimensional controlling parameters, such as magnetic parameter, Eckert number, heat generation/absorption parameter, porosity parameter, Brownian motion parameter, and thermophoresis parameter on velocity, temperature, and concentration profiles are discussed graphically. The effects of the physical factors on the rate of momentum and heat and mass transfer are also determined with appropriate analysis in terms of skin friction, Nusselt number, and Sherwood number. The outcomes illustrate that the local Nusselt number and local Sherwood number are reduced for higher values of the thermophoresis parameter. Besides, it is found that higher estimations of heat generation/absorption and viscous dissipation parameters increase temperature. Moreover, it is found that the temperature profile increases with the involvement of the Brownian motion parameter, while an opposite trend is observed in the concentration profile. A comparison is also provided for limiting cases to authenticate our obtained results.  相似文献   

20.
A numerical analysis is performed of the entropy generation within a combined forced and free convective magnetohydrodynamic (MHD) flow in a parallel-plate vertical channel. The MHD flow is assumed to be steady state, laminar and fully developed. The analysis takes account of the effects of both Joule heating and viscous dissipation. The nonlinear governing equations for the velocity and temperature fields are solved using the differential transformation method (D.T.M.). It is shown that the numerical results are in good agreement with the analytical solutions. The numerical values of the velocity and temperature are used to derive the corresponding entropy generation number (Ns) and Bejan number (Be) within the vertical channel under asymmetric heating conditions. The results show that the minimum entropy generation number and the maximum Bejan number occur near the centerline of the channel. Overall, the results confirm that the differential transformation method provides an accurate and computationally-efficient means of analyzing the nonlinear governing equations of the velocity and temperature fields for MHD flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号