首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   74篇
  国内免费   5篇
电工技术   25篇
综合类   1篇
化学工业   277篇
金属工艺   24篇
机械仪表   37篇
建筑科学   21篇
矿业工程   4篇
能源动力   42篇
轻工业   59篇
水利工程   4篇
石油天然气   17篇
无线电   111篇
一般工业技术   307篇
冶金工业   119篇
原子能技术   7篇
自动化技术   135篇
  2023年   22篇
  2022年   16篇
  2021年   55篇
  2020年   58篇
  2019年   49篇
  2018年   51篇
  2017年   52篇
  2016年   69篇
  2015年   36篇
  2014年   56篇
  2013年   89篇
  2012年   75篇
  2011年   72篇
  2010年   54篇
  2009年   62篇
  2008年   42篇
  2007年   35篇
  2006年   24篇
  2005年   26篇
  2004年   16篇
  2003年   22篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   14篇
  1998年   23篇
  1997年   8篇
  1996年   21篇
  1995年   15篇
  1994年   15篇
  1993年   12篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   4篇
  1973年   2篇
  1964年   1篇
排序方式: 共有1190条查询结果,搜索用时 15 毫秒
1.
Vascular tissue engineering has made prodigious progress in recent years by converging multidisciplinary approaches. Latest technological advancements foster the development of next-generation tissue-engineered vascular grafts (TEVGs) for treating various vasculopathies. While traditional therapeutic methods rely on bypassing the severely damaged vessels with synthetic counterparts with no growth potential, contemporary perspectives focus on biodegradable conduits bestowing an inherent remodeling capability. This review highlights emerging innovative trends and technologies adopted to pragmatically fulfill current scientific needs while improving overall TEVG performance in pre-clinical and clinical settings. A comprehensive overview of various milestones achieved in the past few decades is first summarized, followed by an appraisal of the significant hurdles for clinical translation. The latest techniques to rationally address critical challenges, viz., intimal hyperplasia, thrombosis, constructive graft remodeling, and adequate neo-tissue formation are discussed. Finally, an update on ongoing clinical trials is provided and future perspectives required to persuade TEVGs to become a clinical reality are delineated.  相似文献   
2.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   
3.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
4.
In this article, we have studied the effect of carbonaceous nanofillers viz. fullerenol (0D), carboxylated multi-wall carbon nanotube (MWCNT, 1D), hydroxylated graphene (2D) and combination of carboxylated CNT and hydroxylated graphene as 3D in thermoplastic polyurethane on the tensile properties of the fabricated cellular structures. The concentration of nano-fillers was varied as 0.1, 1, and 5 wt%. Tensile properties of the nanocomposite cellular structures were measured as per ASTM D882 at 20°C (below glass transition temperature, Tg) and 40°C (above Tg). The results have shown that the tensile strength was found to increase by 200%–300% and the tensile modulus was found to increase by 150%–300% for 2D and 3D nano-fillers while significantly poor results were observed for 0D. However, the test data tensile strength and modulus showed marginal increase at 20°C and marginally low at 40°C for 1D filler. The interfacial adhesion was calculated by using experimental tensile data and the predictive models. The interfacial adhesion parameter (Bσ) calculated using Pukanszky equation was found significantly higher value for 2D (Bσ20 = 195.8) and 3D (Bσ20 = 192.0) fillers while poor adhesion was observed for 0D (Bσ20 = −81.6) fillers. The developed cellular structured materials were also evaluated by attenuated total reflection Fourier transform IR spectra, differential scanning calorimetry, X-ray diffraction, scanning electron microscope, and transmission electron microscope.  相似文献   
5.
In recent years,iron(Fe)based degradable metal is explored as an alternative to permanent fracture fixation devices.In the present work,copper(Cu)is added in Fe-Mn system to enhance the degradation rate and antimicrobial properties.Fe-Mn-xCu(x=0.9,5 and 10 wt.%)alloys are prepared by the melting-casting-forging route.XRD analysis confirms austenite phase stabilization due to the presence of Mn and Cu.As predicted by Thermo-Calc calculations,Cu rich phase precipitations are noticed along the austen-ite grain boundaries.Degradation behaviours of Cu added Fe-Mn alloys are investigated through static immersion and electrochemical polarization where enhanced degradation is found for higher Cu added alloys.When challenged against E.Coli bacteria,the Fe-Mn-Cu alloy media extract shows a significant bac-tericidal effect compare to the base alloy.In vitro cytocompatibility studies,as determined using MG63 and MC3T3-E1 cell lines,indicate increased cell density as a function of time for all the alloys.When implanted in rabbit femur,the newly developed alloy does not show any kind of tissue necrosis around the implants.Better osteogenesis and higher new bone formation are observed with Fe-Mn-10Cu alloy as evident from micro-computed tomography(μ-CT)and fluorochrome labelling.  相似文献   
6.
Metallurgical and Materials Transactions B - The influence of Mn segregation that occurs during casting on recrystallization kinetics has been explored for a C-Mn automotive steel. A homogenization...  相似文献   
7.
The three GxxxG repeating motifs from the C-terminal region of β-amyloid (Aβ) peptide play a significant role in regulating the aggregation kinetics of the peptide. Mutation of these glycine residues to leucine greatly accelerates the fibrillation process but generates a varied toxicity profile. Using an array of biophysical techniques, we demonstrated the uniqueness of the composite glycine residues in these structural repeats. We used solvent relaxation NMR spectroscopy to investigate the role played by the surrounding water molecules in determining the corresponding aggregation pathway. Notably, the conformational changes induced by Gly33 and Gly37 mutations result in significantly decreased toxicity in a neuronal cell line. Our results indicate that G33xxxG37 is the primary motif responsible for Aβ neurotoxicity, hence providing a direct structure–function correlation. Targeting this motif, therefore, can be a promising strategy to prevent neuronal cell death associated with Alzheimer's and other related diseases, such as type II diabetes and Parkinson's.  相似文献   
8.
In this letter, the optimal rational approximation of fractional-order bandpass Butterworth filter (FOBBF) is presented. The transfer function of the FOBBF is decomposed into a multiplication of first-order and second-order terms. As a result, the design stability conditions can be easily satisfied using only the variable boundary constraints. The proposed technique generalizes the symmetric fractional-order roll-off characteristic as only a special case of the asymmetric one. Several examples are presented to validate the modeling efficacy.  相似文献   
9.
Destabilisation of as-cast chromium white iron with 16 wt-% chromium are performed by continuous destabilisation treatment for 4 h and short duration (0.66 h) cyclic destabilisation treatment at 900, 950, 1000, 1050, and 1100 °C. Continuous destabilisation causes secondary carbides precipitation from austenite which on slow cooling transforms to pearlite matrix. Cyclic destabilisation treatment causes similar precipitation of finer secondary carbides following shorter period austenitisation and a matrix containing martensite and retained austenite on forced-air cooling. After continuous destabilisation, hardness falls below the as-cast value (HV622); whereas it rises to HV950 after cyclic destabilisation treatment. The as-cast notched impact toughness (4.0 J) increases to 8.5 J or more after both continuous and cyclic destabilisation at 1050 and 1100 °C. Abrasive wear resistance after continuous destabilisation improves only at higher wear load (49.0 N), while after cyclic destabilisation it supersedes the as-cast and Ni-Hard IV performance at both low (19.6 N) and high (49.9 N) wear load.  相似文献   
10.
Innovations in Systems and Software Engineering -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号