首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用双螺杆挤出机将聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯( PETG)与聚碳酸酯(PC)熔融共混,制备PETG/PC共混物,研究了共混物的透明性、力学性能、微观形态结构以及流变性等性能.研究发现,制备的PETG/PC共混物透光率约为91%;PETG、PC相容性很好;PETG/PC共混物为韧性断裂;随着PC含量的增...  相似文献   

2.
采用双螺杆挤出机对聚氨酯(TPU)、聚碳酸酯(PC)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)进行熔融共混,制备出PETG/PC/TPU三元共混物,研究了不同共混物的力学性能、耐溶剂性能、软化温度及微观形态结构等性能。研究发现,对于同样硬度的TPU,聚酯型TPU对改善合金的拉伸强度和冲击强度均优于聚醚型TPU与PETG/PC的共混。硬度较低的聚酯型TPU可较大幅度提高PETG/PC/TPU合金的韧性。TPU的加入可明显改善PETG/PC/TPU合金的耐溶剂性。  相似文献   

3.
乔雯钰  王晨蕾  胡浩 《中国塑料》2020,34(10):24-31
对市售聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)丝材及原材料进行研究,选用PETG 2012作为制备熔融堆积成型技术(FDM)用PETG丝材的基体树脂。选用聚碳酸酯(PC)对基体PETG进行增韧增强改性,并制成3D打印高分子丝材进行打印测试,探讨了PC含量对PETG耗材及制件性能的影响。结果表明,在低PC含量下,PETG与PC的相容性较好,PETG与PC制件未出现明显的分层,分布比较均匀;共混物的流动性随着PC含量的增加而降低,且打印件的维卡软化温度和热变形温度随着PC用量的增加而增加;此外,PC材料的加入使得PETG打印件的力学性能得到较大改善:打印件的拉伸强度随着PC用量的增加而增大,缺口冲击强度却随着PC用量的增加呈现先增加后减小的趋势; PETG/PC的配比为1∶1时,可制得力学性能优异的3D打印耗材。  相似文献   

4.
通过熔融共混法将自制的低黏度高支化聚苯乙烯(HBPS)添加到高黏度的聚碳酸酯(PC)中共混改性,研究了PC/HBPS共混物的动态流变性能。结果表明:共混物的复数模量都比纯PC低,损耗角都比纯PC大;随着温度的升高,共混物的复数模量下降,损耗角增加;共混物的复数黏度都比纯PC低,随着频率的增加,复数黏度的降低程度变小。  相似文献   

5.
采用熔融共混法制备了马来酸酐(MA)封端聚碳酸亚丙酯(PPC)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)的共混物(PPC-MA/PETG),采用套管上吹法将共混物吹塑成膜.通过差示扫描量热仪(DSC)、热失重分析(TGA)及扫描电子显微镜(SEM)等手段系统地研究了共混物的热、力学性能及形貌.结果表明:PPC-MA/PETG共混物为部分相容体系;MA封端PPC可以提高PPC的热分解温度(T-5%),PETG与PPC-MA共混进一步提高了PPC的热性能;当PETG含量低时,PETG作为岛相分散在PPC基体中,随着含量的增加,共混物将发生"海-岛"结构转变成"海-海"结构;共混物薄膜的力学性能较纯PPC大幅增强,从4.7MPa提高到16.93MPa.PPC-MA与PETG共混可以获得力学性能较好的膜材料,改善PPC材料的缺陷,在包装、生物医用材料等领域具有广阔的应用前景.  相似文献   

6.
通过熔融共混方法制备高分子合金丙烯腈-丁二烯-苯乙烯共聚物(ABS)/聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG),采用扫描电镜(SEM)和旋转流变仪对该共混物形态和流变性能进行详细而系统的研究。SEM结果表明,ABS和PETG属于不相容体系,且ABS含量在50%~60%之间,ABS和PETG可形成双连续相结构。流变实验也证实了这个结论。提高剪切速率(40 s-1以上)可以大幅度降低ABS黏度,但是对PETG影响很小,所制备的ABS/PETG共混物对剪切速率变化敏感;与高含量ABS(≥50%)相比,低含量的ABS(≤50%)的共混物,具有较高的储能模量、损耗模量和复合黏度,表明低含量的ABS共混物强度较高,韧性较差。  相似文献   

7.
《塑料》2016,(6)
采用微型双螺杆挤出机,将聚对苯二甲酸乙二醇-1,4-环己烷二甲醇酯(PETG)、聚碳酸酯(PC)、聚氨酯(TPU)挤出共混,制备了PETG/PC、PETG/PC/TPU两种共混物,研究了两种共混物的透明性能、力学性能、相容性及微观结构等。结果表明:PETG/PC共混物具有良好透明性能和相容性,共混物断裂方式为韧性断裂;PC的加入提高了PETG/PC共混物的拉伸强度,但断裂伸长率有所降低;TPU的加入不影响PETG/PC体系的透明性,并能够提高体系的断裂伸长率。  相似文献   

8.
以有机改性蒙脱土(OMMT)为改性剂,采用熔融共混法制备了聚(3-羟基丁酸酯-co-3-羟基戊酸酯)/乙烯-乙酸乙烯酯/有机改性蒙脱土(PHBV/EVA/OMMT)共混物和样条,并通过旋转流变仪、差示扫描量热仪(DSC)、红外光谱仪(FTIR)、万能试验机、热失重分析仪(TG)、偏光显微镜(PLM)和扫描电子显微镜(SEM)等对其流变性能、结晶性能、力学性能、热性能及微观形貌等进行了表征。结果表明,随着OMMT含量的增加,PHBV/EVA/OMMT共混物的损耗模量和复数黏度增大;在PHBV/EVA/OMMT共混物中,OMMT产生了插层结构;OMMT的加入破坏了PHBV/EVA共混物的结晶,使其结晶度降低;当OMMT含量为7份(质量份,下同)时,PHBV/EVA/OMMT的结晶度最低,为43.4 %;随着OMMT含量的增加,PHBV/EVA/OMMT样条的断裂伸长率和冲击强度先升高后降低,当OMMT含量为3份时,其断裂伸长率较PHBV/EVA提升了38.3 %,冲击强度提升了52.5 %;加入OMMT后,PHBV/EVA样条的冲击断面变得更加粗糙。  相似文献   

9.
采用转矩流变仪制备了聚苯乙烯/聚对苯二甲酸-乙二醇-1,4-环己烷二甲醇酯(PS/PETG)共混物和PS/改性PETG(PETG-M)共混物。采用旋转流变仪和熔体流动速率测定仪测定了PS、PETG和PETG-M的流变性能;采用扫描电子显微镜观测了共混物的相态结构。结果表明,随着PETG和PETG-M含量的提高,PS/PETG共混物和PS/PETG-M中PETG和PETG-M分散相颗粒平均粒径都增大,分散相颗粒密度都减小,在含量相同的情况下,PETG-M的分散相颗粒平均粒径小于PETG,PETG-M的分散相颗粒密度高于PETG,PETG-M的分散相粒径分布宽度更窄。  相似文献   

10.
采用熔融共混的方法,制备了不同配比的聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯(ABS)共混物。采用毛细管流变仪研究了PC/ABS共混物的流变行为。结果表明:PC/ABS共混物熔体的流变行为呈假塑性流体的特征,表观黏度随剪切速率的增加而减小,随温度的升高而降低,随ABS含量的增加而减小;随着ABS含量的增加,共混物表观黏度对温度的敏感性降低,对剪切速率的敏感性增加;加入相容剂使PC/ABS共混物更易加工成型。  相似文献   

11.
Rheological and electrical properties were studied on blends of a PETG polyester (cyclohexanedimethanol-modified polyethylene terephthalate) and an inherently static dissipative high molecular weight polyether based copolymer, hereafter referred to as ESD polymer. Several important electrical properties and flow phenomena have been observed. First of all, the PETG blends could result in ESD protected material with excellent performance and a minimal effect on physical properties and melt processability. The rheological characterization reveals that the ESD polymer has a high melt viscosity even at a temperature more than 150 degrees above its melting temperature and that it exhibits pseudoplastic behavior. The PETG melt shows a near constant dynamic viscosity at a low frequency region. The viscosity of the ESD polymer and PETG melt exhibits a cross over at the temperature range from 200–220°C; the PETG melt is the lower viscosity component at low shear rate and the ESD polymer is the lower viscosity component at high shear rate. This appears to result in the existence of a small composition difference in the thickness direction of an injection-molded ESD polymer/PETG part, with a greater fraction of the ESD polymer component in the skin section. This, in turn, could enhance the surface conductivity of the skin region of an injection-molded part. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
通过扩链反应对聚对苯二甲酸乙二醇1,4环己烷二甲醇酯(PETG)进行改性以提高PETG的熔体强度和黏度。采用熔体流动速率仪、旋转流变仪及转矩流变仪考查了扩链剂的使用方式对PETG结构及流变性能的影响。结果表明,酸酐类和环氧类多官能团单体联用对PETG的扩链效果最好,PETG的熔体流动速率由12.83 g/10 min降低至7.50 g/10 min,零剪切黏度(η0)由2022.8 Pa·s增加到4764.2 Pa·s,特征松弛时间(τ0)由0.78 s增加到3.58 s;改性后PETG仍保持着线形结构而未形成凝胶。  相似文献   

13.
Thermal, rheological, morphological, and mechanical properties of a thermotropic liquid crystalline polymer, TLCP (copolyester Vectra A-950 from Hoechst), blended with a polycarbonate (PC), a polyethylene glycol terephthalate (PETG), and a blend of PC and PETG (20/80) are presented and discussed. Important supercooling effects are observed for the TLCP. For the blends the glass transition temperature of the matrix is shown to decrease slightly, suggesting partial miscibility of the components. A finer dispersion is observed for the TLCP/PC blends, at least for TLCP concentrations lower than 20%, for which the mechanical properties are quite good. For higher TLCP concentrations, as well as for the other two matrices, the mechanical properties follow more or less the mixing rule, and the morphology of the blends suggests poor adhesion. We were unable to obtain fibrillar structures by extruding the blends through a capillary rheometer; in the TLCP/PC blends, the TLCP domains were too small, and for the other blends the extrudates had not enough melt strength.  相似文献   

14.
Co-continuous polycarbonate (PC)/poly(styrene-acrylonitrile) (SAN) = 60/40 wt.% blends were filled with 1 wt.% multi-walled carbon nanotubes (MWCNTs), which selectively localized within the PC component. To study the influence of the viscosity ratio, PCs with different viscosities were selected resulting in PC/SAN viscosity ratios (at 100 rad/s) between 1.2 and 4.5. With increasing viscosity ratio, smaller blend structures were observed. Furthermore, optical microscopy revealed that the filler dispersion was improved with decreasing PC viscosity. The highest electrical conductivity was achieved for the blend composite with the coarsest morphology, containing the low viscosity PC and having the lowest PC/SAN viscosity ratio. Transmission electron microscopy analysis indicated that for the composite prepared with high viscosity PC, not all of the incorporated MWCNTs were able to localize completely into the PC component. Instead, some MWCNTs were found to be stacked at the interface of the two polymers, indicating that the high PC melt viscosity had a restricting effect on the movement of the MWCNTs. Moreover, with electrical conductive atomic force microscopy, it was proven that small, spherical PC particles, even if filled with CNTs, do not take part in the conductive network of the blend composites. Rheological analyses showed a correlation with the morphological analysis and the electrical conductive behavior of the blend composites. In summary, a lower viscosity ratio between the blend components, in which upon addition due to thermodynamic reasons the CNTs localize (here PC), and the other component (here SAN) is favorable for high electrical conductivity values.  相似文献   

15.
采用环氧型扩链剂对苯二甲酸-乙二醇-1,4-环己烷二甲醇共聚酯(PETG)进行熔融扩链,并利用高级扩展流变仪、熔体强度测定仪和扫描电子显微镜分别进行了剪切流变、拉伸流变测试和连续挤出发泡行为研究。结果表明:扩链后PETG的储能模量、损耗模量、复数黏度随扩链剂含量的增加而增大,而其损耗因子随扩链剂含量的增加而减小;扩链剂的加入能有效提高PETG树脂的熔体强度和改善其"可发泡性",在发泡成型过程中可以有效阻止泡孔的塌陷和破裂,进而形成泡孔尺寸和形态分布较为均匀的制品。  相似文献   

16.
Polycarbonate (PC)/liquid crystalline polymer (LCP) blends dually filled with glass fiber and nano‐SiO2 were prepared by melt blending, with the use of a commercial Vectra A130 as the source of LCP and glass fiber. In these dually filled PC/LCP melts, rheological hybrid effect occurred, confirmed by the melt viscosity of the quadruple polymer blends decreased with increasing nano‐silica loading, influenced by the minor LCP phase in the blend. The drastic viscosity reduction closely correlates with the deformation and fibrillation of LCP droplets in the system. The LCP fibrillation was controlled jointly by the thermodynamic and hydrodynamic driving forces. Finally, the dually filled PC/LCP melt had decreased viscosity lower than those of pure PC, silica‐filled PC, and PC/Vectra A130 blends, and furthermore had decreased glass fiber breakage, shown by larger average aspect ratio than that in PC/Vectra A130 blends. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
High‐performance blend of polypropylene (PP) and polycarbonate (PC) has not been explored. The difficulty is caused by the big differences in melt viscosity (PP: low viscosity vs. PC: high viscosity) and polarity (PP: nonpolar vs. PC: polar). We put forth a new approach using a reactive plasticizer which is preferentially soluble with PC and polymerizable by organic peroxide. As the plasticizer, diallyl phthalate and triallyl cyanurate (TAC) were used. By reactive extrusion of PP/PC/plasticizer/dicumyl peroxide (e.g., 80/14/6/0.12 wt. ratio), reaction‐induced phase decomposition took place in the dispersed PC particles to develop a regularly phase‐separated nanostructure and the graft copolymer of PP and polymerized plasticizer was in situ generated at the interface. The extruded blend showed an excellent ductile behavior with about 500%‐elongation at break. TAC was very effective to elevate the heat resistance. Then, a super‐ductile PP/PC blend with high heat resistance was successfully developed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
19.
The morphology and nonisothermal crystallization behavior of blends made of poly(phenylene sulfide) (PPS), with a amorphous polycarbonate (PC) were studied. The blend is found to be partially miscible by the dynamic mechanical thermal analysis (DMTA) and melt rheological measurements. The nonisothermal crystallization behavior of blend was studied by differential scanning calorimetry (DSC). The results show clearly that the crystallization temperatures of PPS component in the blend decrease with increasing of PC contents. The crystallization kinetics was then analyzed by Avrami, Jeziorny, and Ozawa methods. It can be concluded that the addition of PC decreases the PPS overall crystallization rate because of the higher viscosity of PC and/or partial miscibility of blend, despite of small heterogeneous nucleation effect by the PC phase and/or phase interface. The results of the activation energy obtained by Kissinger method further confirm that the amorphous PC in the partial miscible PPS/PC blend may act as a crystallization inhibitor of PPS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号