首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用电化学沉积法在阳极氧化制备的TiO2纳米管阵列管壁上沉积一层CeO2纳米颗粒,再将CeO2修饰的透明TiO2纳米管阵列薄膜对电极与聚三甲基噻吩变色电极组装成透过型电致变色器件.实验结果表明:CeO2修饰的TiO2纳米管阵列薄膜仍保持良好的光透过性,其电荷存储能力比纯TiO2纳米管电极提高了30%.经CeO2修饰的TiO2纳米管改善了器件的性能,与对电极为单一TiO2纳米管阵列的器件相比,其对比度仍保持在38%左右,其褪色时间由1.3 s缩短为0.8 s.电致变色器件快速响应得益于纳米管与纳米颗粒组成的复合结构的高比表面积和快速的电荷传输过程.  相似文献   

2.
以低模量钛合金(Ti35Nb和Ti35Nb15Zr)为阳极氧化基材,采用表面阳极氧化方法制备出铌元素和锆元素掺杂的非晶TiO2纳米管阵列,比较了掺杂前后纳米管的润湿性能与体外生物活性.实验结果表明,加入铌和锆元素可减小TiO2纳米管的管径,并有助于增大TiO2纳米管的长度.TiO2纳米管表现出与未氧化前的金属基材所不同的疏水行为.掺杂TiO2纳米管的润湿性随着掺杂元素的变化而变化,铌元素的掺杂可使TiO2纳米管的润湿性改善,铌元素和锆元素共同掺杂对润湿性的改善作用更明显.在模拟体液(SBF)中浸泡后,掺杂TiO2纳米管可快速诱导磷灰石的形成.铌锆元素共同掺杂的纳米管在初始浸泡阶段呈现较快的磷灰石沉积速率.上述研究结果表明,可以通过基材合金化设计来调控或修饰材料表面的亲水或疏水性能,从而探索掺杂TiO2纳米管的生物学性能。  相似文献   

3.
提高二氧化钛纳米管阵列电极的机械稳定性,改善电极的透光性能,有助于提高其光电催化性能,拓展电极的应用范围.通过室温射频溅射方法在玻璃基底上溅射一层金属钛膜,然后在含0.5%HF的电解液,10V阳极氧化电压下进行阳极氧化,得到玻璃基TiO2纳米管阵列电极.扫描电子显微镜和X射线衍射分析表明,玻璃基表面形成了孔径为20~30nm,管长约130nm排列有序的锐钛矿型TiO2纳米管阵列.光电性能测试表明,玻璃基TiO2纳米管阵列与金属钛基TiO2纳米管阵列表现出相似的光电催化性能,明显优于磁控溅射制备的TiO2薄膜.  相似文献   

4.
通过电化学沉积法以TiO2纳米管阵列(TNTs)为基底制备CdSe/TiO2异质结薄膜。研究TiO2纳米管阵列基底不同退火温度(200,350,450,600℃)对CdSe/TiO2异质结薄膜光电化学性能的影响。采用SEM,XRD,UV-Vis,电化学测试等方法对样品的微观形貌、晶体结构、光电化学性能等进行表征。结果表明:立方晶型的CdSe纳米颗粒均匀沉积在TiO2纳米管阵列管口及管壁上。TiO2纳米管阵列未经退火及退火温度为200℃时,为无定型态,在TiO2纳米管阵列上沉积的CdSe纳米颗粒数量少,尺寸小,异质结薄膜光电性能较差,光电流几乎为零。随着退火温度升高到350℃,TiO2纳米管阵列基底开始向锐钛矿转变;且沉积在TiO2纳米管上的CdSe颗粒增多,尺寸增大,光电化学性能提高。退火温度为450℃时光电流值达到最大,为4.05mA/cm^2。当退火温度达到600℃时,TiO2纳米管有金红石相出现,CdSe颗粒变小,数量减少,光电化学性能下降。  相似文献   

5.
载Pt-TiO2纳米管阵列制备及其光电催化性能   总被引:1,自引:0,他引:1  
采用阳极氧化法在纯钛箔表面制备TiO2纳米管,再用直流电沉积法在纳米管内沉积Pt,制备出载Pt-TiO2纳米管电极.并采用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)对其进行表征.研究载Pt-TiO2纳米管阵列与TiO2纳米管阵列对有机磷农药敌敌畏(DDVP)的光电催化降解效果,并与光催化、电降解做了简单对比.结果表明:所制Pt-TiO2纳米管存在锐钛矿晶型TiO2,其饱合光电流比TiO2纳米管大.与单独光催化、电降解相比,载Pt-TiO2纳米管电极光电催化降解效果更显著.  相似文献   

6.
采用氮气中500℃和600℃热处理由阳极氧化法制备的TiO2纳米管阵列,制备了氮掺杂TiO2纳米管阵列电极.分别用环境扫描电镜(ESEM)、X射线光电子能谱(XPS),X射线衍射(XRD)和紫外可见漫反射吸收光谱对电极进行了表征.结果表明氮成功地掺入TiO2纳米管中.氮的引入使所制备的电极表现出可见光电催化活性,其中氮气中500℃下热处理得到的TiO2纳米管阵列电极表现出最好的可见光电催化活性.  相似文献   

7.
采用电子束蒸发方法在透明导电玻璃FTO上沉积Ti金属薄膜,室温条件下在C2H6O2+NH4F中通过恒压阳极氧化法制备出超长TiO2纳米管阵列/FTO电极,并通过场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM),X光电子能谱(XPS),X射线衍射(XRD)及光谱分析等方法对纳米管阵列/FTO电极进行了表征.研究表明,制备出的TiO2纳米管阵列内径43nm,管长5.4μm,经退火处理后得到长度为5μm锐钛矿相TiO2纳米管阵列/FTO透明电极,在可见光波长段的透射率为45%,在400nm波长处有一明显吸收峰.  相似文献   

8.
以高度有序TiO2纳米管阵列作为光阳极,鸭跖草色素作为敏化剂制备了天然染料敏化太阳能电池。阳极氧化6h制备的TiO2纳米管作为电极的电池的光电转换效率约达0.52%,短路电流为1.53mA/cm2。比较不同管长TiO2纳米管阵列对电池的光电性能的影响。利用紫外-可见光光谱仪研究鸭跖草色素的光吸收性能。利用电化学阻抗谱分析电池的界面阻抗。研究表明适当提高TiO2纳米管长度可以有效提高天然染料敏化太阳能电池的光电性能。  相似文献   

9.
TiO_2纳米管半导体特性与光电催化动力学研究   总被引:1,自引:0,他引:1  
通过阳极氧化法在有机溶液中制备TiO2纳米管阵列,随着氧化时间的不同,TiO2纳米管阵列呈现各异的形貌。通过光电流测试,考察了不同氧化时间和施加不同电压下的Ti/TiO2纳米管阵列光电极的光电化学响应,阳极氧化6h表面规整纳米管阵列并施加偏压0.1V光电流响应最强。通过测试Mott-Schott-ky曲线,计算不同氧化时间的TiO2纳米管阵列的半导体载流子浓度、平带电位、空间电荷层宽度和能带弯曲量等特征参数,理论上提出了TiO2纳米管阵列生长机理。在光电催化降解无机氨氮的实验中,所得到的电化学阻抗谱(EIS)表明,外加偏压0.1V时,TiO2纳米管阵列电极的光电催化活性最强,同时通过拟合电路分析可知,光电催化降低了电极界面的反应阻抗,加速了光生载流子的转移,在TiO2纳米管阵列电极/溶液界面Helmholtz层中发生的氧化还原反应是整个光电催化反应的速率控制步骤。  相似文献   

10.
碳掺杂TiO2纳米管列阵的制备及其光催化性能的研究   总被引:1,自引:0,他引:1  
采用电化学阳极氧化法制备TiO2纳米管列阵,并在CO气氛中对TiO2纳米管样品进行焙烧.XPS研究表明,在CO中焙烧的样品产生了Ti-C峰,说明有C的掺杂.SEM及XRD衍射实验表明,随着焙烧温度的升高,C的掺杂加速了TiO2纳米管的晶型结构向金红石相的转变,管壁明显增厚.以亚甲基蓝为光催化实验降解对象,研究了C掺杂对TiO2纳米管的光催化性能的影响,发现在550℃下焙烧后的TiO2纳米管具有较好的光催化活性,C的掺杂能明显提高TiO2纳米管的光催化性能.  相似文献   

11.
以钒钛合金为原料,应用阳极氧化法制备出高度致密、有序的V掺杂TiO2纳米管阵列。应用扫描电镜(SEM)和粉末X光衍射仪(XRD)表征分析纳米管阵列的形貌和结构,结果表明在浓度不同的HF电解液下制备出径向不同的纳米管阵列,电解液浓度(0.5%~1.5%(质量分数)),管径变化(39.7~72.7nm)。在室温、可见光照射条件下,以10mg/L的亚甲基蓝溶液为模拟污染物进行光催化降解试验,研究了其光催化性能。结果显示V掺杂TiO2纳米管阵列光催化性能优于纯TiO2纳米管,且在HF电解液浓度为1.0%(质量分数)时制备出来的TiO2纳米管光催化降解有机毒物性能最佳。  相似文献   

12.
阳极氧化技术在氟基电解液中,对高有序氧化钛纳米管束的制备、特性及在太阳能方面的应用进行了简要综述。材料的结构证明,该材料在光分解水、光催化、气敏检测、光电转化等方面具有潜在巨大的应用。通过改变电压、电解液浓度、pH值、温度,可获得不同长度、直径、形状、壁厚的氧化钛纳米管束。在电解液中加入有机溶剂、淬火等方式掺杂,可改变氧化钛的禁带宽度,从而有效利用太阳能。  相似文献   

13.
Highly ordered titania nanotube arrays are fabricated via anodization process in electrolytes containing HF and acetic acid. Graphite was used as cathode. The size of titania can be controlled by changing anodizing voltage and bath temperature. From FE-SEM images, we observed the microstructure of titania nanotubes. Whereas, these nanotubes were amorphous; to induce crystallinity, the products were annealed at different temperatures. XRD analysis shows that the anatase and rutile phase emerge at different conditions. The optical properties were characterized via UV–vis absorption analysis. On the basis of these work, a discussion on the growth mechanism of nanotube structure was presented in this paper.  相似文献   

14.
In this paper, the formation of titania nanotube arrays was investigated in NH4F/H2SO4 electrolyte. Under optimized electrolyte conditions, the titania nanotube arrays with an inner diameter of about 120 nm and a length of about 300 nm was obtained. During the formation process, the variety of current was observed. The current–time curve implied that the evolvement process of titania nanotube arrays include three stages. The stability of titania nanotube arrays at elevated temperatures was studied. The as-prepared titania nanotube arrays is amorphous, crystallized in anatase and rutile as the rising of the temperature. The samples were characterized by ESEM and XRD.  相似文献   

15.
The large-scale hierarchical anatase titania nanotube arrays on transparent conductive substrate are fabricated via in situ conversion from anatase titania nanowire arrays. The first-step hydrothermal reaction is the growth of ultra-long anatase titania nanowire arrays, and the second-step hydrothermal reaction is the conversion of titania nanowire arrays to titania nanotube arrays modified with a large number of nanosheets. The resultant hierarchical titania nanotube array film provides a large surface area and superior light scattering ability. Dye-sensitized solar cell based on the hierarchical titania nanotube array photoanode obtains a power conversion efficiency as high as 5.96% and shows a prominent increase compared to the pristine titania nanowire array photoanode (2.12%). In addition, the most interesting result is that an optimized efficiency of 7.54% is achieved for the cell based on the hierarchical titania nanotube array photoanode with titania sol modification.  相似文献   

16.
Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10?μm were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100?mW?cm(-2) illumination.  相似文献   

17.
采用电化学阳极氧化法制备了高度有序Ti02纳米管阵列,并提出纳米管“兼并”的概念.结合FE-SEM分析并验证了Macak等人提出的pH值梯度理论,并在此基础上用双电层理论解释了“兼并”的形成机理,同时解释了初期纳米管管径进一步增大的原因.  相似文献   

18.
Self-organized and highly ordered titania nanotube arrays (TNAs) were prepared through electrochemical anodic oxidization on a titanium foil in 0.5 wt.% hydrofluoric acid (HF) electrolyte. The current density and morphology images during the formation process of TNAs were studied. Results show that the formation of TNAs includes the following processes. Initially, dense oxide of titania was rapidly formed on the titanium surface, followed by small pore formation. The adjacent small pores were then integrated and become larger pores. At the same time, small tubes were transformed. These small tubes were further integrated into larger tubes until the primary tube formation. Finally, the tubular structure was gradually optimized and eventually developed into the highly ordered TNAs. A model was proposed to explain the formation mechanism of TNAs fabricated on a titanium foil in HF acid electrolyte.  相似文献   

19.
采用电化学阳极氧化法在纯钛片表面制备出了结构整齐有序的TiO2纳米管阵列, 主要研究了电解液的性质、浓度以及氧化时间对TiO2纳米管阵列形貌的影响, 并对不同电解液中TiO2纳米管阵列的形成机理进行了初步探讨. 结果表明:在不同浓度的HF酸电解液中均可制备出规则、均匀的TiO2纳米管阵列, 管径均匀, 表面平整, 但是纳米管的长度均较短, 约为300~350nm. 在高浓度HF电解液中, 同时获得了规则的纳米管阵列和纳米棒阵列. 在0.5wt% NaF和1mol/L Na2SO4中性电解液中也可以制备出表面光洁、排列整齐有序的TiO2纳米管阵列, 纳米管长度明显长于HF酸电解液中获得的纳米管阵列, 达到了700nm, 但是阵列的表面平整度较差. 在乙二醇+0.6wt% NH4F+2vol% H2O有机电解液体系中可以制得超长的TiO2纳米管阵列, 管径在150nm左右, 管长可达6μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号