首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Liang Tong 《Polymer》2008,49(21):4534-4540
Perfluorocyclobutyl aryl ether-based amphiphilic diblock copolymer containing hydrophilic poly(ethylene glycol) segment was synthesized by atom transfer radical polymerization (ATRP). Perfluorocyclobutyl-containing methacrylate-based monomer, 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate, was prepared firstly, which can be polymerized by ATRP in a controlled way to obtain well-defined homopolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.30). The molecular weights increased linearly with the conversions of monomer and the apparent polymerization rate exhibited first-order relation with respect to the concentration of monomer. ATRP of 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate was initiated by PEG-based macroinitiators with different molecular weights to obtain amphiphilic diblock copolymers with narrow molecular weight distributions (Mw/Mn < 1.35) and the number of perfluorocyclobutyl linkage can be tuned by the feed ratio and the conversion of the fluorine-containing methacrylate monomer. The critical micelle concentrations of these amphiphilic diblock copolymers in water and brine were determined by fluorescence probe technique. The morphologies of the micelles were found to be spheres by TEM.  相似文献   

2.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

3.
Jun Yoo 《Polymer》2011,52(12):2499-2504
The synthesis of comb block copolymers by ring opening metathesis polymerization (ROMP), ring opening polymerization (ROP), and atom transfer radical polymerization (ATRP) is described. Block copolymers were synthesized by the ROMP of oxanorbornene and norbornene monomers followed by hydrogenation of the olefins along the backbone. One block of these diblock copolymers possessed initiators either for the ROP of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione or the ATRP of butyl acrylate. The synthesis and characterization of comb polymers with arms composed of poly(lactic acid) and poly(butyl acrylate) are described. These polymers had well-defined peaks in the size exclusion chromatography spectra which indicated that no homopolymers were synthesized. A comb block copolymer with polymeric arms of poly(styrene-b-vinylpyridine) is described. Vinylpyridine was polymerized from a comb polymer with poly(styrene) arms by ATRP at high dilution of the comb polymer.  相似文献   

4.
The pH-responsive amphiphilic poly(ε-caprolactone)-block-poly(acrylic acid) (PCL-b-PAA) copolymer was prepared by selective hydrolysis of one novel poly(ε-caprolactone)-block-poly(methoxymethyl acrylate) (PCL-b-PMOMA) block copolymer, which was synthesized by combining ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) and atom transfer radical polymerization (ATRP) of methoxymethyl acrylate (MOMA). Selective hydrolysis of the hemiketal ester groups on the PMOMA block gave 100% deprotection without the cleavage of the PCL block. The self-assembly behavior of PCL-b-PAA was investigated by fluorescence spectroscopy, DLS and TEM. The spherical micelles were formed with the hydrophobic PCL block as the core and the hydrophilic PAA as the shell by a co-solvent evaporation method. Moreover, the size and size distribution of the micelles varied with pH value and ionic strength in aqueous solution. The cytotoxicity of the PCL-b-PAA was lower, which was confirmed by MTT assay.  相似文献   

5.
This paper reports the synthesis of an amphiphilic copolymer from linseed oils and its successive auto-association in water into pH-sensitive micelles. An original ATRP lipoinitiator is first designed from linseed oil in two steps. tert-butyl acrylate (tBA) polymerization is consequently initiated from this original initiator and amphiphilic copolymers are obtained after subsequent acidolysis of the PtBA block into poly(acrylic acid) (PAA). The ability of a lipid-b-PAA copolymer to auto-associate in water is finally investigated through different techniques (Fluorescence, Surface Tension, QELS). This copolymer forms well-defined micelles in acidic media with a low critical micellar concentration (cmc) of 7.6 mg L?1 and dissociates when the pH is raised above 7.  相似文献   

6.
We report the synthesis of a well-defined linear tetrablock quaterpolymer of poly(butyl acrylate)-b-polystyrene-b-poly(methyl acrylate)-b-poly(methyl methacrylate) by combining atom transfer radical polymerization (ATRP) and a click coupling approach. For this purpose, polystyrene-b-poly(butyl acrylate) (AB) was prepared by ATRP using macroinitiator as α-trimethylsilyl(TMS)-alkyne ω-bromo polystyrene. The α-(TMS) end of the AB diblock copolymer was deprotected using tetrabutylammonium fluoride (TBAF) in THF. The ω-azide end of the CD diblock copolymer was made from poly(methyl methacrylate)-b-poly(methyl acrylate) (CD) via transformation of the bromine chain end by a simple nucleophilic substitution reaction with NaN3 in DMF. Click coupling between the ω-azide end in CD diblock copolymer with the α-alkyne end in the AB diblock copolymer was then performed by Cu1-catalyzed (3+2) cycloaddition. Gel permeation chromatography (GPC), FT-IR and 1H NMR spectroscopy confirmed the successful formation of a linear ABCD tetrablock copolymer via ATRP and click coupling.  相似文献   

7.
A series of well-defined double hydrophilic graft copolymers, poly(acrylic acid)-g-poly(N-isopropylacrylamide) (PAA-g-PNIPAM), was employed as a novel water-soluble coating for constructing superparamagnetic iron oxide nanoparticles. The copolymer was synthesized via a three-step procedure: firstly, a well-defined hydrophobic PtBA-based backbone, poly(tert-butyl 2-((2-chloropropanoyloxy)-methyl)acrylate)-co-poly(tert-butyl acrylate), (PtBCPMA19-co-PtBA18), was prepared through RAFT copolymerization of a new trifunctional acrylic monomer, tert-butyl 2-((2-chloropropanoyloxy)methyl)acrylate and tert-butyl acrylate; secondly, taking this backbone as a macroinitiator to initiate SET-LRP of N-isopropylacrylamide resulted in well-defined (poly(tert-butyl 2-((2-chloropropanoyloxy)methyl)-acrylate)-co-poly(tert-butyl acrylate))-g-poly(N-isopropylacrylamide) ((PtBCPMA-co-PtBA)-g-PNIPAM) amphiphilic graft copolymers with relatively narrow polydispersities (Mw/Mn ≤ 1.31); thirdly, handling (PtBCPMA-co-PtBA)-g-PNIPAM in acidic conditions afforded PAA-g-PNIPAM graft copolymers. The resulting PAA-g-PNIPAM copolymers were directly utilized as a polymeric stabilizer in the preparation of superparamagnetic Fe3O4 nanoparticles. The particle size can be readily tuned in the range of 12.1–23.2 nm by varying the amount of PAA-g-PNIPAM copolymer or the length of PNIPAM side chain. Besides, the structure and properties of prepared Fe3O4/polymer nanocomposites were characterized by XRD, FT-IR, TGA, TEM, and magnetic measurement in detail.  相似文献   

8.
Huiqi Zhang  Xulin Jiang 《Polymer》2004,45(5):1455-1466
Hydroxyl end-capped telechelic polymers with poly(methyl methacrylate)-block-poly(n-butyl acrylate) (PMMA-b-PBA) backbones have been prepared via atom transfer radical polymerisation (ATRP) together with a nucleophilic substitution reaction. A hydroxyl-functionalised PMMA macroinitiator (HO-PMMA-Br) was prepared via ATRP at the optimised reaction temperature (60 °C) using 2-hydroxyethyl 2-bromoisobutyrate as the initiator. The high functionality of the bromo end group in the macroinitiator was confirmed by both 1H NMR technique and a chain-extension reaction. Electrospray ionisation mass spectrometer proved to be a valuable tool for characterising PMMAs with a bromo end group (PMMA-Br), which provided signals corresponding to the intact polymers although multiply charged polymer chains were observed. The well-defined block copolymers HO-PMMA-b-PBA-Br were obtained by the ATRP of n-butyl acrylate using HO-PMMA-Br as a macroinitiator in a one-pot reaction at 100 °C. The kinetics as well as the dependence of the Mn,SEC and PDIs of the obtained block copolymers on the conversions of n-butyl acrylate in the chain-extension reaction suggested negligible radical termination during the reaction, demonstrating that the well-defined HO-PMMA-b-PBA-Br with a high functionality of bromo end group were obtained. The nucleophilic substitution reaction of a monohydroxyl-functionalised block copolymer HO-PMMA-b-PBA-Br with 5-amino-1-pentanol in dimethyl sulfoxide at room temperature was verified with 1H and 13C NMR techniques, which resulted in a series of telechelic polymers HO-PMMA-b-PBA-OH with a functionality of hydroxyl groups up to 1.7 according to the gradient polymer elution chromatography.  相似文献   

9.
A series of well-defined amphiphilic graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic polystyrene side chains were synthesized by hydrolysis of poly(methyl acrylate)-g-polystyrene under basic condition. The backbone and the side chains were synthesized by atom transfer radical polymerization (ATRP), so the molecular weight could be tuned by the variation of the feed ratio or monomer conversion, and the molecular weight distributions of amphiphilic graft copolymers were kept low (PDI < 1.35). The products were characterized by FT-IR, 1H NMR, 13C NMR, and gel permeation chromatography (GPC). The study of self-assembly behavior can benefit the formation of the well-defined structures of the products.  相似文献   

10.
Dan Peng 《Polymer》2006,47(17):6072-6080
A series of well-defined amphiphilic graft copolymers consisting hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains were synthesized by successive atom transfer radical polymerization (ATRP) followed by hydrolysis of poly(methoxymethyl acrylate) (PMOMA) backbone. Grafting-from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distribution. Hydrophobic side chains were connected to the backbone through stable C-C bonds. The backbone can be easily hydrolyzed with HCl without affecting hydrophobic side chains. This family of amphiphilic graft copolymers can form stable micelles in water. The critical micelle concentration was determined by fluorescence spectroscopy. The micellar morphologies and sizes were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The sizes of micelles were dependent on ionic strength, pH value and preparation conditions.  相似文献   

11.
A new method called reverse iodine transfer polymerization (RITP), based on the in situ generation of transfer agents using molecular iodine I2, was applied to the synthesis of poly(vinylbenzyl chloride). Well-defined diblock copolymers poly(vinylbenzyl chloride)-b-polystyrene with different chain lengths were then successfully produced through sequential polymerization of styrene. The polydispersity index values Mw/Mn ranged from 1.4 to 1.6 for all the homopolymers and diblock copolymers. The diblock copolymers could be synthesized with equally good results by starting with either poly(vinylbenzyl chloride) or polystyrene as macrotransfer agents. The diblock copolymers were then quaternized with triethylamine to prepare cationic amphiphilic diblock copolymers.  相似文献   

12.
Thermoplastic elastomers based on well-defined 10- and 20 arm star-like block copolymers containing middle soft poly(n-butyl acrylate) (PBA) block and outer hard poly(α-methylene-γ-butyrolactone) (PMBL) block were synthesized by atom transfer radical polymerization (ATRP). Phase separated cylindrical or lamellar morphologies, depending on the copolymers composition and the annealing temperature of the films, were observed by atomic force microcopy and small-angle X-ray scattering. The mechanical and thermal properties of the copolymers were thoroughly characterized. The prepared copolymers retained their phase separated morphology even at temperatures exceeding 300 °C. Both tensile strength and elongation values for the star-like copolymers were considerably higher than for linear copolymers with similar composition.  相似文献   

13.
The current study synthesized amphiphilic thermal/pH-sensitive block copolymers PNiPAAm-b-PHpr by condensation polymerization of trans-4-hydroxy-l-proline (Hpr) initiated from hydroxy-terminated poly(N-isopropylacrylamide) (PNiPAAm) as the macroinitiator in the presence of the catalyst, SnOct2. 1H NMR, FTIR, and gel permeation chromatography (GPC) characterized these copolymers. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. The LCST values depended on the polymer composition and the media. With critical micelle concentrations (CMCs) in the range of 1.23-3.73 mg L−1, the block copolymers formed micelles in the aqueous phase owing to their amphiphilic characteristics. Increased hydrophobic segment length or decreased hydrophilic segment length in an amphiphilic diblock copolymer produced lower CMC values. The current work proved the core-shell structure of micelles by 1H NMR analyses of the micelles in D2O. Transmission electron microscopy analyzed micelle morphology, showing a spherical core-shell structure. The micelles had an average size in the range of 170˜210 nm (blank), and 195˜280 nm (with drug). Observations showed high drug entrapment efficiency and drug-loading content for the drug micelles.  相似文献   

14.
A series of well-defined triblock copolymers containing middle soft poly(n-butyl acrylate) (PBA) block and outer hard blocks of poly(α-methylene-γ-butyrolactone) homopolymer (PMBL) or random poly (α-methylene-γ-butyrolactone)-r-poly(methyl methacrylate) copolymer (PMBL-r-PMMA) were synthesized by atom transfer radical polymerization (ATRP). Phase separated morphologies of cylindrical or spherical hard block domains arranged in the soft PBA matrix were observed by atomic force microscopy and small-angle X-ray scattering. The mechanical and thermal properties of the copolymers were thoroughly characterized and their thermoplastic elastomer behavior was studied. Dynamic mechanical analysis (DMA) showed for all PMBL-b-PBA-b-PMBL copolymers a very broad rubbery plateau range extending up to temperatures of 300 °C. Replacement of the PMBL hard block with the less brittle PMBL-r-PMMA resulted in an improvement of the tensile properties, without compromising the very good thermal stability of the materials.  相似文献   

15.
The reversible addition-fragmentation chain transfer (RAFT) copolymerization of vinylidene chloride (VDC) with methyl acrylate (MeA) was studied in the presence of poly(ethylene oxide)-based macromolecular RAFT (macroRAFT) agents of the trithiocarbonate type (PEO-TTC) in solution and in aqueous emulsion. Firstly the formation of PEO-b-P(VDC-co-MeA) diblock copolymers was performed in toluene solution at 30 °C and a good control over the polymerization with high chain-end functionality was shown. A first aqueous emulsion copolymerization of VDC with MeA was performed using one of the amphiphilic PEO-b-P(VDC-co-MeA) diblock copolymers as macromolecular stabilizer. Then, in a series of experiments the PEO-TTC macroRAFT agents were directly tested as both chain transfer agents and stabilizing agents in similar conditions (aqueous batch emulsion copolymerization of VDC with MeA at 70 °C). The influence of the nature and concentration of the initiating system and the presence or not of a buffer were studied. We demonstrated that in simple conditions, nanometric latex particles composed of amphiphilic PEO-b-P(VDC-co-MeA) diblock copolymers formed by polymerization-induced self-assembly (PISA). It can thus be concluded that PEO-TTC macroRAFT agents are valuable non-ionic macromolecular stabilizers in the emulsion copolymerization of VDC and MeA and allow the formation of core–shell diblock copolymer particles in the absence of free surfactant. However, when rather high molar masses of the hydrophobic PVDC-based block were targeted, the determined molar masses deviated from the theoretical values.  相似文献   

16.
A polymerized ionic liquid (PIL) diblock copolymer with a long alkyl side-chain, poly(MMA-b-MUBIm-Br), was synthesized at various compositions from an ionic liquid monomer, (1-[(2-methacryloyloxy)undecyl]-3-butylimidazolium bromide) (MUBIm-Br), and a non-ionic monomer, methyl methacrylate (MMA). The PIL diblock copolymer was synthesized via post-functionalization from its non-ionic precursor PIL diblock copolymer, poly(MMA-b-BrUMA) (BrUMA = 11-bromoundecyl methacrylate), which was synthesized via the reverse addition fragmentation chain transfer (RAFT) polymerization technique. Differential scanning calorimetry reveals two distinct constant glass transition temperatures (Tgs) with a low PIL segment Tg. These PIL block copolymers result in easily processable, flexible, transparent films with high mechanical strength. A high bromide ion conductivity of 64.85 mS cm−1 at 80 °C and 90% RH was measured for the PIL diblock copolymer with an ion exchange capacity (IEC) of 1.44 meq/g (23.3 mol% MUBIm-Br). Interestingly, this result was three times higher than its analogous PIL homopolymer (2.75 meq/g; 100 mol% MUBIm-Br) and an order of magnitude higher than a PIL block copolymer from a previous study with similar chemistry, similar IEC, higher water content, but shorter alkyl side-chain length. Ion conductivity did not scale as expected with water content, which is unusual for water-assisted ion transport (e.g., protons, hydroxide, chloride) in ion-containing polymers, and therefore suggests other mechanisms that impact ion transport in PIL block copolymers.  相似文献   

17.
P. Ravi  L.H. Gan  Y.Y. Gan  X.L. Xia  X. Hu 《Polymer》2005,46(1):137-146
Homopolymers of azobenzene (azo) methacrylates with different substituents and their diblock copolymers with poly(2-(dimethylamino)ethyl methacrylate p(DMAEMA) were synthesized via atom transfer radical polymerization (ATRP). Controlled/‘living’ ATRP of azo methacrylates were achieved up to ∼50% conversion, after which deviation occurred. It was found that the copolymerization rate of 6-[4-phenylazo]phenoxy]hexylmethacrylate (PPHM) from p(DMAEMA) macroinitiator was almost identical to that for the homopolymerization of PPHM monomer, with kapp∼0.0078 min−1. For the copolymerizations, almost complete incorporation of the azo methacrylate monomers could be obtained with low molecular weight macroinitiator (PDMAEMA)-Cl, whereas macroinitiators of long chain length did not give full conversion, most likely due to chain floding and steric hindrance caused by the bulk azo monomers. Because azo monomers are highly hydrophobic, only the diblock copolymers with short azo segment were soluble in water which self-assembled into micellar particles. The effect of photo-induced trans-cis isomerization on lower critical solution temperature (LCST) and surface tension were studied. The LCST of the diblock copolymers increased upon irradiation by UV light due to the cis conformers being more hydrophilic. However, the trans-cis isomerization had only small effect on the critical micelle concentration (cmc) and γcmc of azo methacrylate block copolymers, due to the formation of compact core of the micelles. The formations of core-shell micelles were established from LLS and TEM studies. All the three azo methacrylate amphiphilic block copolymers formed hard core-shell micelles with relatively small Rh values of 31 nm for p(DMAEMA172-b-BPHM7), 26 nm for p(DMAEMA172-b-CPHM7) and 32 nm for p(DMAEMA172-b-PPHM9). Whereas for the azo acrylate copolymer, p(DMAEMA172-b-BPHA6), large micelles with Rh∼78 nm with loose core was formed.  相似文献   

18.
Bifunctional polystyrene macroinitiators, having various molecular weights, were prepared by atom transfer radical polymerization (ATRP), initiated with bifunctional initiator 1,3-bis{1-methyl-1[(2,2,2-trichloroethoxy) carbonylamino]ethyl}benzene in conjunction with CuCl catalyst and polyamine ligands. These macroinitiators were subsequently used for ATRP of tert-butyl acrylate (t-BuA), giving BAB triblocks poly[(t-BuA)-b-(Sty)-b-(t-BuA)] as precursors of amphiphilic copolymers. Both the polymerization steps proceeded as controlled processes with linear semi-logarithmic conversion plots and lengths of the blocks following theoretical predictions. Hydrolysis of outer poly(t-BuA) blocks led to triblock copolymers with the central polystyrene block and outer blocks of poly(acrylic acid), the molecular weights of which ranged from ca. 5 × 103 to almost 1 × 105 Da.  相似文献   

19.
Core cross-linked amphiphilic star-block copolymers were prepared by hydrolysis of the outer shell of star-block copolymers prepared using copper mediated atom transfer radical polymerization (ATRP). In an arm-first approach, linear poly(tert-butyl methacrylate) macroinitiators (PtBMA-Cl) were extended with styrene to yield PtBMA-b-PS-Cl and then cross-linked with divinylbenzene (DVB) in order to yield (PtBMA-b-PS)arms-PDVBcore star-block copolymers. Then, PMAA-b-PS block and (PMAA-PS)arms-PDVBcore star-block copolymers were obtained by hydrolysis of the PtBMA blocks in both linear and cross-linked copolymers, as confirmed by 1H NMR analyses. The amphiphilic character of these copolymers was confirmed by solubilisation in water. Several factors affecting the polymer aggregation and solubility such as the length, the composition of the arms and the catalyst used were studied. An acrylate analogue, that is, (PAA-b-PS)arms-PDVBcore, was also prepared for comparison purposes. Atomic force microscopy (AFM) and differential scanning calorimetry (DSC) were used to elucidate the morphology and the thermal behaviour of the star-block copolymers.  相似文献   

20.
Jessica Gwyther  Ian Manners   《Polymer》2009,50(23):5384-5389
Living anionic ring-opening polymerisation of isopropylmethylsila[1]ferrocenophane yields poly(ferrocenylisopropylmethylsilane) (PFiPMS) with controlled molecular weights and narrow polydispersities up to Mn = ca. 20,000 Da. Polystyrene-b-poly(ferrocenylisopropylmethylsilane) (PS-b-PFiPMS) diblock copolymers have been prepared via sequential living anionic polymerisation. These materials are examples of diblock copolymers with an amorphous, organometallic block with a glass transition temperature (Tg) above room temperature (60 °C). High molecular weight diblock copolymers (Mn = 42,000–51,000 Da) were targeted with low polydispersities (PDI = 1.1). As both blocks are amorphous, these materials self-assemble into predictable morphologies in the bulk state with well-ordered nanodomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号