首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
化学工业   11篇
机械仪表   1篇
能源动力   1篇
无线电   4篇
一般工业技术   11篇
自动化技术   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Anticounterfeiting materials are used to distinguish real banknotes, products, and documents from counterfeits, fakes, or unauthorized replicas. However, conventional anticounterfeiting materials generally exhibit a single anticounterfeiting function, resulting in a low level of security. Herein, a novel anticounterfeiting nanocomposite is demonstrated with numerous prominent security features. The nanocomposite is fabricated by doping upconverting nanoparticles (UCNPs) in a photoresponsive azobenzene-containing polymer (azopolymer). Because of the cistrans photoisomerization of the azopolymer, the nanocomposite exhibits photoinduced reversible color changes suitable for anticounterfeiting applications. Additionally, the hard nanocomposite can be converted to a rubber-like soft solid by light irradiation. Imprinted microstructures are fabricated on the photosoftened nanocomposite, which result in photonic colors. Moreover, polarization-dependent structures are fabricated on the nanocomposite via photoinduced orientation for encryption. Importantly, UCNPs in the nanocomposite emit visible light upon excitation by near-infrared light, enabling the observation of various anticounterfeiting structures with high contrast. An advantage of the anticounterfeiting nanocomposite is that the security features can be observed by the naked eye for quick discrimination and can be analyzed using laboratory equipment for higher accuracy. The anticounterfeiting nanocomposite is easily processed on paper, glass, and plastic, which demonstrates its potential anticounterfeiting functions for banknotes, wines, and medicines.  相似文献   
2.
Poly(butadiene)-b-poly(ethylene oxide) vesicles were successfully loaded with hydrophilic dye Phloxine B. Dye addition during vesicle formation leads to Phloxine B encapsulated inside the water filled vesicle core as well as to freely diffusing dye molecules. The removal of uncapsulated substrate involves time consuming methods like dialysis or harsher methods like ultra filtration or selective precipitation, posing the risk of irreversible sample manipulation. Here used Phloxine B as pH sensitive fluorescence indicator allows the characterization of hydrophilic loading without separation procedure by adjusting the pH value. Additionally membrane blocking efficiency can be studied by time dependent fluorescence measurements. Cryogenic TEM studies showed that the self-assembled structure remained unchanged when the hydrophilic dye was incorporated within the vesicles. Fluorescence microscopy imaging proved the encapsulation of the hydrophilic dye inside the core volume. The combination of fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS) measurements as ensemble methods confirmed those results additionally.  相似文献   
3.
The objective of this study is to investigate the dynamics of flows occurring in the wakes of rising bubbles of different shapes and sizes. Different wake dynamics can result in qualitatively different mixing characteristics. In the case of fast gas-liquid reaction networks, reactions occur almost exclusively in the bubble wake. Thus, wake mixing can have a strong impact on the reaction yield and selectivity. Dynamic numerical simulations were performed to study the flow of liquid around bubbles of different shapes. The obtained velocity and pressure fields were used to investigate the liquid-phase mixing in the flow for each case. As a strong connection between mixing and chaos is known to exist, Lagrangian tracking of passive tracer particles was used to identify chaotic fluid transport in the flows. Chaotic dynamics lead to folding and stretching of fluid elements, which results in very effective mixing. To quantify mixing, stretching fields were computed for each flow case. Finally, different liquid-phase chemical reaction networks were tested to illustrate the effects of mixing on chemical reaction yields and selectivities.  相似文献   
4.
Detailed, high‐resolution numerical simulations have been performed of the buoyancy‐driven motion of deformable, chemically reacting bubble and droplet swarms. Mass transfer rates and chemical reaction selectivities were determined and a comparison is presented between the results for bubble/droplet swarms and single bubbles. The mixing in the wake of bubbles was characterized as well. It was shown that for mixing‐sensitive reaction networks, the hydrodynamics of the bubble swarm may significantly impact the reaction selectivity. Four special cases are highlighted, i.e., highly exothermic reactions, heterogeneously catalyzed reactions, animal cell cultures and experiments. The most important outcome of this work is that bubble swarms and the impact of the swarm hydrodynamics on reacting systems can be studied in detail. This is the first study of this kind reported in the literature. Its importance is paramount as knowledge of the unique flow dynamics inside bubble swarms is crucial to understanding the mechanisms controlling mass transport and chemical reactions and is a prerequisite for effective process intensification.  相似文献   
5.
The impact of single-bubble wake dynamics on the reaction-enhanced mass transfer and on the yield and selectivity of the cyclohexane oxidation reaction was studied using a two-dimensional CFD-reaction model that was developed by our group. Temperature and the concentrations of the (desired) intermediate and (undesired) final products of this autocatalytic reaction were the parameters of this study. Two bubble types were studied: (a) a circular bubble with closed wake, and (b) an elliptical bubble with an unsteady, vortex-shedding wake. The main results of our work are: (1) Film theory over-predicts reaction-enhanced mass transfer since the assumption of an average film thickness is not justified. In order to study fast reaction systems on a reactor scale using coarse-grid CFD codes, a full bubble model, or correlations based on it, should be incorporated as a sub-grid micro model. (2) The bubble wake does not contribute to mass transfer in systems where reaction rates are low. For fast reactions, the local mass transfer rate in the wake can increase by several thousand percent. (3) Vortex shedding causes qualitatively different mixing since patches rich in the dissolved gas are quickly convected away from the bubble. Bubbles that cause vortex shedding will lead to a significantly higher conversion per volume than spherical bubbles. (4) Parallel-consecutive reactions with a high liquid-phase reactant concentration and with reaction rates that depend in an identical way on the dissolved gas concentration, are not micro-mixing sensitive in terms of selectivity. Since bubble shapes and sizes can be controlled by changing operating and design parameters, the yield of this reaction can be controlled.  相似文献   
6.
7.
Bulk flow property characterization often requires large powder samples (tens to hundreds of grams). However, many applications have limited sample availability, due to cost, material availability, safety concerns, etc. Therefore, reducing the amount of required material is of interest. A novel compressibility method is introduced using less than 50 mg, for the materials studied here. The effect of particle size and cohesion due to capillary forces are determined using a small‐scale compressibility cell mounted on a texture analyzer. It is found that the powder bed consolidation occurred in two regimes, described using the Walker and Heckel equations. The small‐scale compressibility method was compared to known behavior at larger scales and validated against the FT4 compressibility test. It was found that bulk behavior could be observed using the small‐scale compressibility method. Additional behavior caused by small‐scale events, which are averaged out in large‐scale measurements, are revealed in the small‐scale device introduced here. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4193–4200, 2016  相似文献   
8.
Controlling the structures and functions of gels is important for both fundamental research and technological applications. Introducing photoresponsive units into gels enables remote control of their properties with light. However, existing gels show photoresponsiveness only at room temperature or elevated temperatures. The development of photoresponsive gels that work below 0 °C can expand their usage in cold environments. Here, photoresponsive metallopolymer organohydrogels that function even at −20 °C are reported. The organohydrogels are prepared using photoresponsive Ru–thioether coordination bonds as reversible crosslinks to form polymer networks. A water/glycerol mixture is used as an anti-freezing solvent. At −20 °C, the Ru–thioether coordination bonds are dissociated under light irradiation and reformed reversibly in the dark, which result in alternating crosslinking densities in the polymer networks. This process enables inducing reversible gel-to-sol transitions, healing damaged gels, controlling the mechanical properties and volumes of the gels, and rewriting microstructures on the gels below 0 °C.  相似文献   
9.
The effect of water on the packing and flow properties of fine and coarse particles was experimentally investigated. Four different particle sizes of glass beads, from 5 to 275 μm, were studied with increasing water weight‐percentages. Using a FT4 Powder Rheometer, changes in bulk properties were collected as a function of water content and particle size. The results show that water content plays a significant role on the packing and flow of the particles. Small amounts of water created porous aggregates due to liquid bridging. Greater amounts of water resulted in the filling of the void‐spaces. This was indicated by an increase in basic flow energy, density, and pressure drop, with a decrease in porosity. A greater understanding of bulk properties of wetted material is useful to develop standard systems that can be used to examine the behavior of more complex situations, and implement changes to improve materials handling and processing. © 2015 American Institute of Chemical Engineers AIChE J, 62: 648–658, 2016  相似文献   
10.
Recently, various bio‐medical applications of nanoporous silicon (np‐Si) have been suggested. This work investigates the biocompatibility of np‐Si particles taking into account hazardous residua confined in the pores after preparation. The emphasis is on the potential application of such particles as oxygen photosensitizer for photodynamic therapy of cancer, which requires both negligible toxicity of np‐Si particles in darkness and a high photo‐cyto‐toxic effect due to generation of singlet oxygen under illumination. Considerable amounts of water soluble toxic impurities are found to be present in the nanoporous shell of micrometer‐sized np‐Si particles immediately after their preparation by chemical etching of bulk silicon powder. The effects of several ordinary cleaning treatments are investigated by using thermal effusion mass‐spectroscopy and FTIR spectroscopy. A particular purification procedure is developed, capable to reduce the concentration of residual impurities to levels acceptable for bio‐medical applications while preserving the required photo‐activity of the np‐Si particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号