首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
纪红  王勇  庞永华 《润滑与密封》2020,45(8):115-119
选用添加不同炭黑份数的丁腈橡胶,利用挂片试验装置和往复摩擦磨损试验机,分别研究油润滑下其静态溶胀和磨损行为,探讨其在油润滑下发生磨损的临界载荷。结果表明:随着炭黑份数的增加,丁腈橡胶的硬度、抗拉强度和润湿角增加,溶胀质量变化率降低,相同试验条件下橡胶试样的摩擦因数和磨损量均降低;载荷较低时橡胶不发生磨损,当载荷增大到临界值时橡胶才发生磨损且磨损量随载荷增加而增加;随着炭黑份数的增加,橡胶试样发生磨损的临界载荷也增大。  相似文献   

2.
采用开炼法结合热处理的工艺方法制备不同丁腈橡胶含量的双基体摩擦材料试样。借助热分析仪、扫描电镜和湿式摩擦性能试验机研究丁腈橡胶含量对双基体摩擦材料摩擦磨损性能、磨损机制和热性能的影响。实验结果表明:当丁腈橡胶质量分数为25%时动、静摩擦因数均达到最大,对偶材料的磨损最小;当丁腈橡胶含量较低时,摩擦材料有明显的机械剥离,含量较高时黏着磨损与磨粒磨损特征明显;摩擦材料的最大分解温度随丁腈橡胶的含量增加而有所降低。  相似文献   

3.
以水润滑轴承用丁腈橡胶(NBR)材料为研究对象,在CBZ-1摩擦磨损试验机上开展其在清水及不同盐分含量水介质中以及不同速度及载荷下的摩擦学试验,对比分析其摩擦因数、磨损量以及磨损表面形貌等摩擦学特性的变化规律。结果表明:盐水质量分数、速度和载荷对丁腈橡胶的摩擦学性能影响显著,其摩擦学特性的变化是盐水质量分数、载荷、速度以及丁腈橡胶的黏弹性等因素共同作用的结果;丁腈橡胶材料与锡青铜配副的摩擦因数随转速的升高而降低,随载荷的增加而降低;随着盐水质量分数的增加,摩擦副的摩擦因数和磨损量先增大而后均有所减小,这是因为盐水质量分数通过影响润滑介质的黏度来改变水润滑的效果,通过对铜盘的腐蚀作用来改变摩擦副的摩擦情况,从而在整体上影响摩擦因数和磨损量的变化。  相似文献   

4.
利用往复式磨损试验机研究丁腈橡胶在含不同尺寸的尖形和圆形砂粒原油介质中的摩擦磨损行为,并利用体式显微镜和场发射扫描电镜分析橡胶磨痕的表面形貌及检测表面元素含量。结果表明:随砂粒尺寸的增加,丁腈橡胶在含砂原油介质中的摩擦因数和磨损量均逐渐增加,而随着载荷的增加,摩擦因数降低,磨损量增加;在相同载荷和砂粒尺寸下,尖形砂粒存在时的摩擦因数和磨损量都大于圆形砂粒;在小载荷条件下,不同尺寸砂粒的运动方式都以滚动为主,在大载荷情况下,当尖形砂粒尺寸增大到1 mm时,砂粒在材料表面的运动方式以滑动为主;砂粒尺寸以及载荷的增加,均加大了对分子链的破坏,从而使得磨痕表面C元素相对含量降低。  相似文献   

5.
研究了含稀土耐热镁合金在室温和150 ℃时的显微组织、力学和摩擦学性能,并探讨了其在高温的摩擦学机制.研究表明:耐热合金主要由基体(α-Mg)相和第二相(Al11Ce3、Mg17Al12、Al10Ce2Mn7和MgO相)组成,其在150 ℃时除延伸率有所增加外,抗拉强度和屈服强度均较室温时显著下降.耐热镁合金的摩擦因数随载荷增大而减小,滑行速度和滑行距离对摩擦因数的影响不大;磨损率随着载荷和滑行距离的增加而增大,但随滑行速度的增加而减小;且耐热镁合金在150 ℃的摩擦学性能优于其室温摩擦学性能.随着载荷变化,磨损机制发生变化,低载荷时表现为氧化磨损和磨粒磨损,中等载荷时表现为磨粒磨损和轻微剥层磨损,较高载荷时表现为剥层磨损.  相似文献   

6.
丁腈橡胶是一种重要的螺杆泵定子材料.以不同炭黑及丙烯腈含量的丁腈橡胶与45#钢组成的摩擦副为研究对象,采用MPV-600型环-块摩擦磨损试验机,在干摩擦和原油润滑条件下进行摩擦磨损试验,对丁腈橡胶磨损量及摩擦系数进行分析,初步探讨了其磨损机理.从试验结果可以看出,干摩擦条件下丁腈橡胶的磨损量随着载荷的增大而增大,炭黑和丙烯腈含量的增加使丁腈橡胶的耐磨性增强.原油介质下的磨损规律与干摩擦基本相同,丁腈橡胶磨损表面平整,磨损量很小,且原油介质的润滑和冷却作用使橡胶的摩擦系数降低.  相似文献   

7.
为研究树脂对丁腈橡胶密封材料的性能研究,利用机械共混法通过添加不同比例的树脂与丁腈橡胶混合制成复合摩擦材料进行拉伸和撕裂试验。采用CFT-I型多功能表面综合测试仪研究在不同转速及不同载荷下其摩擦磨损性能,采用三维形貌仪,SEM分析了在不同转速,不同载荷条件下丁腈橡胶复合材料的摩擦性能。结果表明:添加5份树脂的丁腈橡胶其拉伸及撕裂性能较好,拉伸强度达到10.34 MPa,撕裂强度达到34.75 MPa。但添加过量时,随酚醛树脂用量的增加,拉伸强度和撕裂强度会相应的下降。复合材料中添加5份树脂时,在不同转速下和不同载荷条件下,添加树脂可明显降低其摩擦系数,减小其磨损量。酚醛树脂可以增强丁腈橡胶的基体强度,增大其硬度,增强其耐磨性能。  相似文献   

8.
以丁腈橡胶改性酚醛树脂作为树脂基体,芳纶纤维-玻璃纤维混杂纤维作为变量,经热压烧结制备出一种混杂纤维增强摩阻材料。在干摩擦条件下通过摩擦磨损试验机测试其摩擦学性能。经实验表明:材料的摩擦系数随着载荷、滑动速率的增大整体呈现减小趋势,磨损率随着载荷的增加出现波动,随滑动速率的增大呈现减小的趋势。在不同载荷和滑动速率条件下,含有芳纶/玻纤混杂纤维增强摩阻材料表现出较好的摩擦学性能。摩擦过程中,含有芳纶-玻纤混杂纤维的摩阻材料磨损形式为犁沟和塑性变形,未含有的磨阻材料磨损形式主要为疲劳磨损。  相似文献   

9.
将硬度和强度不同的两种高强石墨进行γ射线辐照,将辐照前后的石墨与SA 508钢组成摩擦副进行摩擦试验,研究了载荷和润滑条件对高强石墨摩擦学行为的影响,并基于磨损形貌分析了磨损机制。结果表明:硬度、抗压强度较低的高强石墨在低载荷下干摩擦时的摩擦因数小,摩擦稳定;硬度、抗压强度较高的高强石墨在中等载荷下干摩擦时的摩擦因数小,摩擦稳定;在湿摩擦条件下,硬度、抗压强度较低的石墨在低载荷下的摩擦因数和磨损量均较小,在较高载荷下的摩擦因数和磨损量均较大;经大剂量γ射线辐照后,高强石墨的硬度、抗压强度、抗折强度和摩擦学性能基本不变;高强石墨在干摩擦条件下的磨损机制以磨粒磨损为主,伴有疲劳磨损,在湿摩擦条件下的磨损机制以磨粒磨损和冲刷磨损为主。  相似文献   

10.
采用MPV-600型微机控磨粒磨损试验机考察了潜油螺杆泵定子丁腈橡胶(NBR)和氟橡胶(FPM)与转子45#钢配副在干摩擦条件下的磨损行为,并用扫描电子显微镜-X射线能量散射分析(SEM-EDXA)法对橡胶的磨痕表面形貌、元素含量进行分析。结果表明:两种橡胶在低载荷条件下的干摩擦磨损主要是以滞后摩擦为主,而较高载荷时NBR的磨损机制表现为粘着磨损;橡胶磨损的物理过程为微切削作用产生的微观分子断裂,随着载荷的增大,宏观分层剥落逐渐起主导作用;干摩擦过程中橡胶分子链发生断裂形成大分子自由基,大分子自由基异构化并发生氧化反应。  相似文献   

11.
为改善丁腈橡胶水润滑轴承的摩擦学性能,以丁腈橡胶为基体,通过添加不同量的超高分子量聚乙烯(UHMWPE)粉末(分别为丁腈橡胶量的12%、50%、100%)制得3种复合材料;分析不同复合材料的结构,研究其在水润滑条件下的摩擦磨损特性,并与纯丁腈橡胶和纯UHMWPE材料进行对比。结果表明:制备的UHMWPE与丁腈橡胶复合材料中,UHMWPE以分散相的形式分布在丁腈橡胶基体中,分布较为均匀;UHMWPE的加入提高了丁腈橡胶材料的自润滑性能,其中UHMWPE的添加量为丁腈橡胶的50%和100%时复合材料在低速时的摩擦因数明显减小;UHMWPE的加入提高了丁腈橡胶基体的硬度,改善了复合材料摩擦表面的挤压变形,使得复合材料的磨损量有所降低。研究表明,一定添加量的UHMWPE添加量可明显改善丁腈橡胶水润滑轴承的摩擦学性能,其最佳添加量为丁腈橡胶的50%。  相似文献   

12.
以竹纤维为增强相,通过稀土化合物改性制备一种树脂基复合材料;采用环块式摩擦磨损实验,研究稀土化合物改性复合材料在油润滑状态下载荷、转速对试样摩擦学性能的影响,以及稀土化合物改性对复合材料试样摩擦学性能的影响;比较干摩擦状态和油润滑状态下复合材料的摩擦学性能,观察和分析试样磨损表面形貌,探讨其磨损机制。实验结果表明:油润滑条件下,稀土化合物改性复合材料的摩擦因数和磨损率都随着载荷的增大而增加;较高载荷下摩擦因数随着转速的增大先增加后减小,而磨损率则呈现逐步增加的趋势;稀土化合物的改性使竹纤维和基体界面结合更为紧密,提高摩擦因数的同时降低了磨损率;在油润滑作用下,试样磨损由干摩擦时的磨粒磨损和疲劳磨损转变成为轻微的疲劳磨损;在油润滑状态下,复合材料处于边界润滑状态,故摩擦因数和磨损率均低于干摩擦。  相似文献   

13.
采用环块式摩擦磨损实验研究了一种新型摩擦材料在水润滑状态下不同载荷与转速对试样摩擦学性能的影响,并对比干摩擦条件下的摩擦学性能变化,借助磨损表面形貌观察分析其磨损机理。实验结果表明:水润滑条件下,摩擦系数随着载荷的增大而减小,随着转速的提高先增加后减小;磨损率随着载荷与转速的提高都减小。相同载荷与转速下,干摩擦时磨损机理以磨粒磨损和黏着磨损为主,而水润滑条件下水形成边界润滑,磨损机理以磨粒磨损和轻微的黏着磨损为主;水润滑条件下摩擦系数和磨损率均低于干摩擦,主要是由于水起到了润滑和冷却的作用,阻止了转移膜的形成,并在材料表面形成水膜起到了边界润滑的作用。  相似文献   

14.
湿煤粉条件下丁腈橡胶摩擦磨损规律的研究   总被引:2,自引:0,他引:2  
国内外对橡胶材料在煤粉条件下的摩擦磨损特性尚缺乏研究,因而对丁腈橡胶在湿煤粉条件下的磨料磨损进行了研究,发现其磨损机理为疲劳磨损,磨损率随着法向载荷的增大而增大,随着放置速度的增大而减小;而摩擦系数则与法向载荷和旋转速度大致无关,其中水份在丁腈橡胶磨料磨损中主要起着三个作用:⑴对煤粉的粘结作用;⑵水膜的润滑作用;⑶降低瓣工作温度。  相似文献   

15.
唐黎明 《润滑与密封》2023,48(12):138-143
利用分子动力学模拟研究碳纳米管(CNTs)直径改变时对丁腈橡胶(NBR)基体力学及摩擦学性能的影响。采用恒应变法考察不同复合材料模型的力学性能,结果表明复合材料力学性能随着NBR基体中CNTs直径增大呈现先增加后减小的趋势。剪切模拟结果表明,剪切后复合材料基体中分子链发生了不同程度的断裂,出现了聚合物分子链向摩擦界面聚集的现象,其中较大直径CNTs增强NBR复合材料中分子链相对完整连续,摩擦学性能改善效果更好。较大直径CNTs对NBR基体具有显著的增强效果,限制了NBR分子链的活动能力,更多的分子链聚集在CNTs周围,复合材料体系致密性及稳定性提高,从而改善了CNTs/NBR复合材料力学及摩擦学性能。其中直径(6,6)CNTs增强NBR复合材料具有更高的剪切模量,力学性能优异,表现出了更好的摩擦磨损性能。  相似文献   

16.
为研究二硫化钼(2H-MoS2)对抗氧剂4020和丁腈橡胶(NBR)复合材料热氧老化及摩擦学性能的影响,采用分子动力学(MD)模拟分别建立4020/NBR和MoS2/4020/NBR复合材料的模型,分析不同温度下2H-MoS2对热氧老化性能、力学性能和摩擦学性能的影响。结果表明:添加MoS2后,复合材料的相容性、稳定性和热氧老化性能均得到有效提高,力学性能也得到明显提升,即使在398 K高温下,复合材料也能表现出优异的热氧老化性能和力学性能;与4020/NBR复合材料相比,MoS2/4020/NBR复合材料在298、398 K温度下的摩擦因数分别减小了约30%和25%,磨损率减小了5%和7%,表明MoS2可以有效提高NBR复合材料的摩擦学性能。  相似文献   

17.
短切玻璃纤维增强尼龙材料的摩擦与磨损   总被引:2,自引:0,他引:2  
在环块式磨损试验机上研究了载荷、速度以及润滑介质等因素对自制短切玻璃纤维增强尼龙材料摩擦学行为的影响 ,利用扫描电镜对其磨损机理进行分析。发现 :材料的摩擦系数随载荷的增加而下降 ,达到最小值后 ,又随载荷的增加而持续上升 ,随着速度的增加 ,材料的摩擦系数增加 ;材料的磨损量则随载荷、速度的增加而持续增加 ;材料的磨损以粘着、疲劳为主。在润滑条件下 ,复合材料的摩擦系数大大降低 ;油润滑条件下 ,材料基本无磨损 ,但水润滑条件下 ,材料的磨损量反而比干摩擦条件下大。  相似文献   

18.
针对高频摆动关节轴承摩擦热对自润滑纤维复合材料摩擦磨损性能的影响,研制了高频使用条件下的玻璃纤维增强聚四氟乙烯(GF/PTFE)自润滑纤维复合材料,利用MYB~500高频高载摆动摩擦磨损试验机,对其进行不同摩擦温度下的摩擦磨损性能测试,研究摩擦热作用下材料自润滑性能和磨损性能衰退特征,分析磨损产物和摩擦表面以及不同摩擦温度下材料的磨损机理。结果表明,摩擦热对材料自润滑性能影响显著,适当的摩擦温度范围能够保证材料的自润滑性能,摩擦温度和摩擦因数之间互为耦合作用,对材料的磨损性能具有一定的影响;高摩擦热作用于自润滑过程及机理的改变,造成材料的磨损性能衰退现象。因此,不同温度下材料的磨损特征具有明显的差异化,其中低摩擦温度下(60~120℃)材料自润滑性能优异,磨损率很低;140℃摩擦温度条件下材料摩擦磨损性能开始衰退;材料在高摩擦温度下(140~180℃)的磨损初期自润滑性能良好、磨损轻微,而中后期磨损严重。微观分析表明,低摩擦温度下材料的磨损机理以轻微粘着和疲劳磨损为主;高摩擦温度下材料的磨损以片状剥落、纤维剪切破坏为主,且磨损面局部损伤特征明显,磨损严重。  相似文献   

19.
采用UMT-3多功能摩擦磨损试验机研究了3种国产典型浸酚醛树脂石墨与SiC陶瓷配对副在干摩擦和油润滑条件下的摩擦学特性,结果表明:干摩擦下,摩擦因数随载荷p与速度v的乘积(pv值)的增大呈下降趋势;pv值较小时,磨损机理主要为轻微黏着磨损和磨粒磨损,pv值较大时则变为严重黏着磨损、磨粒磨损和疲劳磨损;相同条件下的磨损率受速度的影响比受载荷的影响更大;油润滑下,摩擦因数保持在0.1左右,磨损机理主要为黏着磨损和疲劳磨损;pv值增至5 MPa·m/s时,干摩擦下3种浸渍石墨摩擦副表面最大温升为21.1 ℃,油润滑下最大温升为14.9 ℃且H1石墨温升均最低。综合考虑浸渍树脂石墨的力学性能、摩擦学特性和端面温升,推荐石墨化度为45%~55%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号